Truncated Trk receptor isoforms lacking the kinase domain are abundantly expressed during development and in the adult; however, their function and signaling capacity is largely unknown. Recently, we have investigated whether TrkB Receptors have other functions outside the nervous system. We found that a novel unexpected role of BDNF in regulating the cardiac contraction force independent of the nervous system innervation. This function is mediated by the truncated TrkB.T1 receptor expressed in cardiomyocytes. Loss of TrkB.T1 in these cells impairs calcium signaling and causes cardiomyopathy. TrkB.T1 is activated by BDNF produced by cardiomyocytes suggesting an autocrine/paracrine loop. These findings unveil a novel signaling mechanism in the heart that is activated by BDNF and provide evidence for a global role of this neurotrophin in the homeostasis of the organism by signaling through different TrkB receptor isoforms. Moreover, we are investigating whether activation of TrkB.T1 by BDNF has a protective role during genetic or drug-induced cardiac injury. For example, we have crossed our TrkB.T1 deficient mice with a distrophic mouse model to investigate whether loss of TrkB.T1 worsen the cardiac deficit caused by the mutant dystrophin gene. Moreover, we are testing whether doxorubicin-induced cardiac toxicity is affected by loss of TrkB.T1/BDNF signaling.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010391-18
Application #
9556278
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
18
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Ma, Qian; Yang, Jianmin; Milner, Teresa A et al. (2017) SorCS2-mediated NR2A trafficking regulates motor deficits in Huntington's disease. JCI Insight 2:
Puverel, Sandrine; Kiris, Erkan; Singh, Satyendra et al. (2016) RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells. Oncotarget 7:85109-85123
Fulgenzi, Gianluca; Tomassoni-Ardori, Francesco; Babini, Lucia et al. (2015) BDNF modulates heart contraction force and long-term homeostasis through truncated TrkB.T1 receptor activation. J Cell Biol 210:1003-12
Kiris, Erkan; Wang, Ting; Yanpallewar, Sudhirkumar et al. (2014) TrkA in vivo function is negatively regulated by ubiquitination. J Neurosci 34:4090-8
Yu, Tao; Calvo, Laura; Anta, BegoƱa et al. (2014) In vivo regulation of NGF-mediated functions by Nedd4-2 ubiquitination of TrkA. J Neurosci 34:6098-106
Lucas, Daniel; Scheiermann, Christoph; Chow, Andrew et al. (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19:695-703
Puverel, Sandrine; Tessarollo, Lino (2013) RanBPM, a scaffolding protein for gametogenesis. Curr Top Dev Biol 102:357-84
Siao, Chia-Jen; Lorentz, Christina U; Kermani, Pouneh et al. (2012) ProNGF, a cytokine induced after myocardial infarction in humans, targets pericytes to promote microvascular damage and activation. J Exp Med 209:2291-305
Dorsey, Susan G; Lovering, Richard M; Renn, Cynthia L et al. (2012) Genetic deletion of trkB.T1 increases neuromuscular function. Am J Physiol Cell Physiol 302:C141-53
Liu, Yin; Rutlin, Michael; Huang, Siyi et al. (2012) Sexually dimorphic BDNF signaling directs sensory innervation of the mammary gland. Science 338:1357-60

Showing the most recent 10 out of 21 publications