Recent accomplishments of our immunotherapy clinical trials include the following: [ ] PHASE 1 TRIAL OF M7824 (MSB0011359C), A BIFUNCTIONAL FUSION PROTEIN TARGETING PD-L1 AND TGF-beta, IN ADVANCED SOLID TUMORS. M7824 (MSB0011359C) is an innovative first-in-class bifunctional fusion protein composed of a monoclonal antibody against programmed death ligand 1 (PD-L1) fused to a TGFbeta trap. In the 3+3 dose-escalation component of this phase I study (NCT02517398), eligible patients with advanced solid tumors received M7824 at 1, 3, 10, or 20 mg/kg once every 2 weeks until confirmed progression, unacceptable toxicity, or trial withdrawal; in addition, a cohort received an initial 0.3 mg/kg dose to evaluate pharmacokinetics/ pharmacodynamics, followed by 10 mg/kg dosing. The primary objective is to determine the safety and maximum tolerated dose (MTD); secondary objectives include pharmacokinetics, immunogenicity, and best overall response. Nineteen heavily pretreated patients with ECOG 0-1 have received M7824. Grade greater than or equal to3 treatment-related adverse events occurred in four patients (skin infection secondary to localized bullous pemphigoid, asymptomatic lipase increase, colitis with associated anemia, and gastroparesis with hypokalemia). The MTD was not reached. M7824 saturated peripheral PD-L1 and sequestered any released plasma TGFb1, -b2, and -b3 throughout the dosing period at 1 mg/kg. There were signs of efficacy across all dose levels, including one ongoing confirmed complete response (cervical cancer), two durable confirmed partial responses (PR; pancreatic cancer; anal cancer), one near-PR (cervical cancer), and two cases of prolonged stable disease in patients with growing disease at study entry (pancreatic cancer; carcinoid). M7824 has a manageable safety profile in patients with heavily pretreated advanced solid tumors. Early signs of efficacy are encouraging, and multiple expansion cohorts are ongoing in a range of tumors. [ ] PHASE I STUDY OF A POXVIRAL TRICOM-BASED VACCINE DIRECTED AGAINST THE TRANSCRIPTION FACTOR BRACHYURY. The transcription factor brachyury has been shown in preclinical studies to be a driver of the epithelial-to-mesenchymal transition (EMT) and resistance to therapy of human tumor cells. This study describes the characterization of a Modified Vaccinia Ankara (MVA) vector-based vaccine expressing the transgenes for brachyury and three human costimulatory molecules (B7.1, ICAM-1, and LFA-3, designated TRICOM) and a phase I study with this vaccine. Human dendritic cells (DC) were infected with MVA-brachyury-TRICOM to define their ability to activate brachyury-specific T cells. A dose-escalation phase I study (NCT02179515) was conducted in advanced cancer patients (n = 38) to define safety and to identify brachyury-specific T-cell responses. MVA-brachyury-TRICOM-infected human DCs activated CD8+ and CD4+ T cells specific against the self-antigen brachyury in vitro. No dose-limiting toxicities were observed due to vaccine in cancer patients at any of the three dose levels. One transient grade 3 adverse event (AE) possibly related to vaccine (diarrhea) resolved without intervention and did not recur with subsequent vaccine. All other AEs related to vaccine were transient and less than or equal to grade 2. Brachyury-specific T-cell responses were observed at all dose levels and in most patients. The MVA-brachyury-TRICOM vaccine directed against a transcription factor known to mediate EMT can be administered safely in patients with advanced cancer and can activate brachyury-specific T cells in vitro and in patients. Further studies of this vaccine in combination therapies are warranted and planned. [ ] AVELUMAB FOR METASTATIC OR LOCALLY ADVANCED PREVIOUSLY TREATED SOLID TUMORS (JAVELIN SOLID TUMOR): A PHASE 1A, MULTICOHORT, DOSE-ESCALATION TRIAL. Avelumab (MSB0010718C) is a human IgG1 monoclonal antibody that binds to PD-L1, inhibiting its binding to PD-1, which inactivates Tcells.
We aim ed to establish the safety and pharmacokinetics of avelumab in patients with solid tumors while assessing biological correlatives for future development. Eighteen patients were analyzed in the dose-limiting toxicity analysis set: three at dose level 1 (1 mg/kg), three at dose level 2 (3 mg/kg), six at dose level 3 (10 mg/kg), and six at dose level 4 (20 mg/kg). Only one dose-limiting toxicity occurred, at the 20 mg/kg dose, and thus the maximum tolerated dose was not reached. We recorded some evidence of clinical activity in various solid tumors, with partial confirmed or unconfirmed responses in four (8%) of 53 patients; 30 (57%) additional patients had stable disease. Pharmacokinetic analysis (n=86) showed a dose proportional exposure between doses of 3 mg/kg and 20 mg/kg and a half-life of 95-99 h (3.9-4.1 days) at the 10 mg/kg and 20 mg/kg doses. Target occupancy was greater than 90% at doses of 3 mg/kg and 10 mg/kg. Anti-drug antibodies were detected in two (4%) of 53 patients. No substantial differences were found in absolute lymphocyte count or multiple immune cell subsets, including those expressing PD-L1, after treatment with avelumab. Avelumab has an acceptable toxicity profile up to 20 mg/kg and the maximum tolerated dose was not reached. Based on pharmacokinetics, target occupancy, and immunological analysis, we chose 10 mg/kg every 2 weeks as the dose for further development and phase 3 trials are ongoing.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010425-19
Application #
9779635
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
19
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Heery, Christopher R; O'Sullivan-Coyne, Geraldine; Madan, Ravi A et al. (2017) Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1a, multicohort, dose-escalation trial. Lancet Oncol 18:587-598
Hege, Kristen M; Bergsland, Emily K; Fisher, George A et al. (2017) Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer 5:22
Heery, Christopher R; Madan, Ravi A; Stein, Mark N et al. (2016) Samarium-153-EDTMP (Quadramet®) with or without vaccine in metastatic castration-resistant prostate cancer: A randomized Phase 2 trial. Oncotarget 7:69014-69023
Duggan, Megan C; Jochems, Caroline; Donahue, Renee N et al. (2016) A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-?-2b in patients with CEA-expressing carcinomas. Cancer Immunol Immunother 65:1353-1364
Heery, Christopher R; Ibrahim, Nuhad K; Arlen, Philip M et al. (2015) Docetaxel Alone or in Combination With a Therapeutic Cancer Vaccine (PANVAC) in Patients With Metastatic Breast Cancer: A Randomized Clinical Trial. JAMA Oncol 1:1087-95
Heery, Christopher R; Singh, B Harpreet; Rauckhorst, Myrna et al. (2015) Phase I Trial of a Yeast-Based Therapeutic Cancer Vaccine (GI-6301) Targeting the Transcription Factor Brachyury. Cancer Immunol Res 3:1248-56
Gulley, James L; Marté, Jennifer; Heery, Christopher R et al. (2015) The impact of leukapheresis on immune-cell number and function in patients with advanced cancer. Cancer Immunol Immunother :
Boyerinas, Benjamin; Jochems, Caroline; Fantini, Massimo et al. (2015) Antibody-Dependent Cellular Cytotoxicity Activity of a Novel Anti-PD-L1 Antibody Avelumab (MSB0010718C) on Human Tumor Cells. Cancer Immunol Res 3:1148-1157
Schlom, Jeffrey; Hodge, James W; Palena, Claudia et al. (2014) Therapeutic cancer vaccines. Adv Cancer Res 121:67-124
Gulley, James L; Madan, Ravi A; Tsang, Kwong Y et al. (2014) Immune impact induced by PROSTVAC (PSA-TRICOM), a therapeutic vaccine for prostate cancer. Cancer Immunol Res 2:133-41

Showing the most recent 10 out of 39 publications