Alzheimer's disease (AD) is a misfolded protein disease characterized by the accumulation of beta-amyloid (Abeta) peptide as senile plaques, progressive neurodegeneration, and memory loss. Recent evidence suggests that AD pathology is linked to the destabilization of cellular ionic homeostasis mediated by toxic pores made of Abeta peptides. Understanding the exact nature by which these pores conduct electrical and molecular signals could aid in identifying potential therapeutic targets for the prevention and treatment of AD. Here using atomic force microscopy (AFM) and molecular dynamics (MD) simulations, we compared the imaged pore structures with models to predict channel conformations as a function of amino acid sequence. Site-specific amino acid (AA) substitutions in the wild-type Abeta(1-42) peptide yield information regarding the location and significance of individual AA residues to its characteristic structure-activity relationship. We selected two AAs that our MD simulation predicted to inhibit or permit pore conductance. The substitution of Phe19 with Pro has previously been shown to eliminate conductance in the planar lipid bilayer system. Our MD simulations predict a channel-like shape with a collapsed pore, which is supported by the AFM channel images. We suggest that proline, a known beta-sheet breaker, creates a kink in the center of the pore and prevents conductance via blockage. This residue may be a viable target for drug development studies aiming to inhibit Abeta from inducing ionic destabilization toxicity. The substitution of Phe20 with Cys exhibits pore structures indistinguishable from the wild type in AFM images. MD simulations predict site 20 to face the solvated pore. Overall, the mutations support the previously predicted beta-sheet-based channel structure.In Alzheimer's disease and frontotemporal dementias, the microtubule-associated protein Tau forms intracellular paired helical filaments. The filaments can form not only by the full-length human Tau protein, but also by the three repeated (K19) or four repeated (K18) Tau segments. However, of interest, experimentally, K19 can seed K18, but not vice versa. To obtain insight into the cross-seeding between K18 and K19 aggregates, here, K18 and K19 octamers with repeat 3 (R3) in U-shaped, L-shaped, and long straight line-shaped (SL-shape) conformations are assembled into different structures. The simulation results show that K18-8/K19-8 (K18 and K19 assemblies number 8) with R3 in an L shape and K18-9/K19-9 with R3 in an SL shape are highly populated and present the highest structural similarity among all simulated K18 and K19 octamers, suggesting that similar folding of K18/K19 may serve as structural core for the K18-K19 co-assembled heterogeneous filament. We demonstrate that formation of stable R2 and R3 conformations is the critical step for K18 aggregation, and R3 is critical for K19 fibrillization. The different core units in K18 and K19 may create a cross-seeding barrier for the K18 seed to trigger K19 fibril growth because R2 is not available for K19. Our study provides insights into cross-seeding involving heterogeneous structures. The polymorphic nature of protein aggregation could be magnified in the cross-seeding process. If the seeding conformations lead to too much divergence in the energy landscape, it could impede fibril formation. Such an effect could also contribute to the asymmetric barrier between K18 and K19.More than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-beta structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states. A growing body of data has suggested that these toxic species form ion channels in cellular membranes causing disruption of calcium homeostasis, membrane depolarization, energy drainage, and in some cases apoptosis. Amyloid peptide channels exhibit a number of common biological properties including the universal U-shape beta-strand-turn-beta-strand structure, irreversible and spontaneous insertion into membranes, production of large heterogeneous single-channel conductances, relatively poor ion selectivity, inhibition by Congo red, and channel blockade by zinc. Recent evidence has suggested that increased amounts of amyloids not only are toxic to its host target cells but also possess antimicrobial activity. Furthermore, at least one human antimicrobial peptide, protegrin-1, which kills microbes by a channel-forming mechanism, has been shown to possess the ability to form extended amyloid fibrils very similar to those of classic disease-forming amyloids.Mutations, even if not directly in the ligand binding sites of proteins, can lead to disease. In cell surface receptors, this can happen if they uncouple conformational changes that take place upon agonist (or antagonist) binding to the extracellular domain and the intracellular response. Uncoupling can take place by disrupting a major allosteric propagation pathway between the extra- and intracellular domains. Here I provide a mechanistic explanation: I first describe how propagation takes place;second, what can happen in the presence of a disease-related mutation which is distant from the binding site;and finally, how drugs may overcome this disruption and rescue function. The mutations in the glycine receptor alpha1 subunit (alpha1R271Q/L) which cause the neuromotor disorder hyperekplexia are on example of such allosteric mutations. In this issue of the BJP, Shan et al. show that normal function was restored to these mutant receptors by substitution of the segment which contained the mutated position, by a homologous one. An allosteric drug could mimic the effects of such substitution. Within this framework, I highlight the advantages of allosteric drugs and the challenges in their design.How do the cullins, with conserved structures, accommodate substrate-binding proteins with distinct shapes and sizes? Cullin-RING E3 ubiquitin ligases facilitate ubiquitin transfer from E2 to the substrate, tagging the substrate for degradation. They contain substrate-binding, adaptor, cullin, and Rbx proteins. Previously, we showed that substrate-binding and Rbx proteins are flexible. This allows shortening of the E2-substrate distance for initiation of ubiquitination or increasing the distance to accommodate the polyubiquitin chain. However, the role of the cullin remained unclear. Is cullin a rigid scaffold, or is it flexible and actively assists in the ubiquitin transfer reaction? Why are there different cullins, and how do these cullins specifically facilitate ubiquitination for different substrates? To answer these questions, we performed structural analysis and molecular dynamics simulations based on Cul1, Cul4A, and Cul5 crystal structures. Our results show that these three cullins are not rigid scaffolds but are flexible with conserved hinges in the N-terminal domain. However, the degrees of flexibilities are distinct among the different cullins. Of interest, Cul1 flexibility can also be changed by deletion of the long loop (which is absent in Cul4A) in the N-terminal domain, suggesting that the loop may have an allosteric functional role. In all three cases, these conformational changes increase the E2-substrate distance to a specific range to facilitate polyubiquitination, suggesting that rather than being inert scaffold proteins, cullins allosterically regulate ubiquitination.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010440-11
Application #
8552693
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2012
Total Cost
$531,424
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Jang, Hyunbum; Muratcioglu, Serena; Gursoy, Attila et al. (2016) Membrane-associated Ras dimers are isoform-specific: K-Ras dimers differ from H-Ras dimers. Biochem J 473:1719-32
Lu, Shaoyong; Jang, Hyunbum; Nussinov, Ruth et al. (2016) The Structural Basis of Oncogenic Mutations G12, G13 and Q61 in Small GTPase K-Ras4B. Sci Rep 6:21949
Baram, Michal; Atsmon-Raz, Yoav; Ma, Buyong et al. (2016) Amylin-A? oligomers at atomic resolution using molecular dynamics simulations: a link between Type 2 diabetes and Alzheimer's disease. Phys Chem Chem Phys 18:2330-8
Nussinov, Ruth; Muratcioglu, Serena; Tsai, Chung-Jung et al. (2016) K-Ras4B/calmodulin/PI3K?: A promising new adenocarcinoma-specific drug target? Expert Opin Ther Targets 20:831-42
Guven-Maiorov, Emine; Keskin, Ozlem; Gursoy, Attila et al. (2016) TRAF3 signaling: Competitive binding and evolvability of adaptive viral molecular mimicry. Biochim Biophys Acta 1860:2646-55
Datta, Siddhartha A K; Clark, Patrick K; Fan, Lixin et al. (2016) Dimerization of the SP1 Region of HIV-1 Gag Induces a Helical Conformation and Association into Helical Bundles: Implications for Particle Assembly. J Virol 90:1773-87
Lu, Shaoyong; Jang, Hyunbum; Gu, Shuo et al. (2016) Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 45:4929-52
Jang, Hyunbum; Banerjee, Avik; Chavan, Tanmay S et al. (2016) The higher level of complexity of K-Ras4B activation at the membrane. FASEB J 30:1643-55
Chakrabarti, Mayukh; Jang, Hyunbum; Nussinov, Ruth (2016) Comparison of the Conformations of KRAS Isoforms, K-Ras4A and K-Ras4B, Points to Similarities and Significant Differences. J Phys Chem B 120:667-79
Xu, Liang; Nussinov, Ruth; Ma, Buyong (2016) Allosteric stabilization of the amyloid-? peptide hairpin by the fluctuating N-terminal. Chem Commun (Camb) 52:1733-6

Showing the most recent 10 out of 173 publications