Combination Therapy: Small-Molecule Inhibitors with vaccine: Small molecule BCL-2 inhibitors are being examined as monotherapy in phase I/II clinical trials for several types of tumors. However, few data are available about the effect of BCL-2 inhibitors on immune function.
The aims of this study were to investigate the effect of a small molecule BCL-2 inhibitor on immune function and determine the most effective way of combining this inhibitor with a recombinant vaccine to treat tumors. The in vitro effect of the pan-BCL-2 inhibitor GX15-070 was assessed in mouse CD8 T lymphocytes at 2 different stages of activation as well as regulatory T lymphocytes (Treg). The in vivo effect of GX15-070 after recombinant vaccinia/fowlpox CEA-TRICOM vaccination was analyzed in tumor-infiltrating lymphocytes, and in splenocytes of mice bearing pulmonary tumors. The therapeutic efficacy of such sequential therapy was measured as a reduction of pulmonary tumor nodules. Activated mature CD8 T lymphocytes were more resistant to GX15-070 as compared to early-activated cells. Treg function was significantly decreased after treatment with the BCL-2 inhibitor. In vivo, GX15-070 was given after vaccination so as to not negatively impact the induction of vaccine-mediated immunity, resulting in increased intratumoral activated CD8:Treg ratio, and significant reduction of pulmonary tumor nodules. This study is the first to show the effect of a small molecule BCL-2 inhibitor on the immune system and following a vaccine. It is also the first to demonstrate the efficacy of this sequence in reducing tumors in mouse models, providing a rationale for the design of combinational clinical studies. In a different set of studies, we investigated the a small-molecule inhibitor for tyrosine kinase;sunitinib. This study investigated the immunomodulatory effects of sunitinib in order to rationally design combinational platforms with immunotherapies for the treatment of solid tumors. Using a mouse model, we studied the effects of sunitinib given for 4 weeks at concentrations comparable to 37.5-50 mg/day in humans, followed by 2 weeks off the drug (sunitinib 4/2). We assessed the effect of differently timed combinations of sunitinib and a poxvirus-based vaccine encoding carcinoembryonic antigen (CEA) plus 3 costimulatory molecules on immune responses in CEA-transgenic (CEA-Tg) mice. Antitumor studies were performed in CEA-Tg mice bearing CEA-transfected MC38 murine colon carcinomas (MC38-CEA), treated either concurrently or sequentially with sunitinib and vaccine. In vitro, sunitinib inhibited PDGFR phosphorylation on MC38-CEA cells at concentrations similar to those biologically available during human treatment. In vivo, one cycle of sunitinib 4/2 caused bimodal immune effects: (a) decreased regulatory cells during the 4 weeks of treatment and (b) an immune-suppression rebound during the 2 weeks of treatment interruption. In a model using CEA-Tg mice bearing CEA+ tumors, continuous sunitinib followed by vaccine increased intratumoral infiltration of antigen-specific T lymphocytes, decreased immunosuppressant T regulatory cells and myeloid-derived suppressor cells, reduced tumor volumes, and increased survival. The immunomodulatory activity of continuous sunitinib administration can create a more immune-permissive environment. In combination with immunotherapies, sunitinib treatment should precede vaccine, in order to precondition the immune system, to maximize the response to vaccine-mediated immune enhancement. Combination Therapy: Chemotherapy (cisplatin/vinorelbine) with vaccine: The 5-year survival rate for stage IB-III non-small cell lung cancer (NSCLC) remains 15%. Surgical resection followed by adjuvant chemotherapy with cisplatin and vinorelbine is one standard of care. We sought to determine in a preclinical model if (a) the combination of cisplatin and vinorelbine could positively modulate components of the immune system independent of antitumor activity, and (b) there were synergistic effects of this drug combination and vaccine immunotherapy. We examined the effect of cisplatin/vinorelbine on gene expression, cell-surface phenotype, and CTL-mediated cytolysis of murine lung carcinoma cells in vitro;we also assessed the effects of cisplatin/vinorelbine on immune subsets and function of Tregs in vivo. Finally, we evaluated the potential synergy between chemotherapy and a recombinant yeast-CEA vaccine in a murine model transgenic for CEA with mice bearing lung tumors. These studies demonstrated that exposure of lung tumor cells to the platinum doublet cisplatin/vinorelbine modulates tumor cell phenotype and increases sensitivity to CTL-mediated cytolysis. These studies also demonstrated that cisplatin/vinorelbine (a) induces sub-myeloablative leucopenia that differentially modulates reconstitution of Treg vs. effector T cell subsets, and (b) can be employed synergistically with vaccine, exploiting homeostatic peripheral expansion of T-cells. Antitumor studies showed for the first time that cisplatin/vinorelbine combined with vaccine increases the survival of mice with established NSCLC. These findings provide the rationale for the potential clinical benefit of the combined use of vaccine with cisplatin/vinorelbine chemotherapy regimens.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010661-07
Application #
8349093
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2011
Total Cost
$363,871
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Fujii, Rika; Jochems, Caroline; Tritsch, Sarah R et al. (2018) An IL-15 superagonist/IL-15R? fusion complex protects and rescues NK cell-cytotoxic function from TGF-?1-mediated immunosuppression. Cancer Immunol Immunother 67:675-689
Kim, Peter S; Kwilas, Anna R; Xu, Wenxin et al. (2016) IL-15 superagonist/IL-15R?Sushi-Fc fusion complex (IL-15SA/IL-15R?Su-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget 7:16130-45
Gameiro, Sofia R; Malamas, Anthony S; Tsang, Kwong Y et al. (2016) Inhibitors of histone deacetylase 1 reverse the immune evasion phenotype to enhance T-cell mediated lysis of prostate and breast carcinoma cells. Oncotarget 7:7390-402
Jochems, Caroline; Fantini, Massimo; Fernando, Romaine I et al. (2016) The IDO1 selective inhibitor epacadostat enhances dendritic cell immunogenicity and lytic ability of tumor antigen-specific T cells. Oncotarget :
Kwilas, Anna R; Ardiani, Andressa; Gameiro, Sofia R et al. (2016) Androgen deprivation therapy sensitizes triple negative breast cancer cells to immune-mediated lysis through androgen receptor independent modulation of osteoprotegerin. Oncotarget 7:23498-511
Fujii, Rika; Friedman, Eitan R; Richards, Jacob et al. (2016) Enhanced killing of chordoma cells by antibody-dependent cell-mediated cytotoxicity employing the novel anti-PD-L1 antibody avelumab. Oncotarget :
Moore, Ellen C; Cash, Harrison A; Caruso, Andria M et al. (2016) Enhanced Tumor Control with Combination mTOR and PD-L1 Inhibition in Syngeneic Oral Cavity Cancers. Cancer Immunol Res 4:611-20
Gameiro, Sofia R; Malamas, Anthony S; Bernstein, Michael B et al. (2016) Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell-Mediated Killing. Int J Radiat Oncol Biol Phys 95:120-30
Kwilas, Anna R; Gameiro, Sofia R; Kim, Peter S et al. (2015) Improving clinical benefit for prostate cancer patients through the combination of androgen deprivation and immunotherapy. Oncoimmunology 4:e1009303
Kwilas, Anna R; Donahue, Renee N; Tsang, Kwong Y et al. (2015) Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron 2:

Showing the most recent 10 out of 38 publications