The overall goal of our program is to develop more effective therapies for patients with mesothelioma using monoclonal antibodies direcetd to tumor differentiation antigens. Our current studies are focused on using immunotherapy directed against the tumor differentiation antigen mesothelin that is highly expressed in many cancers including malignant mesothelioma.Mesothelin, a tumor differentiation antigen is expressed on normal mesothelial cells lining the pleura, pericardium and peritoneum but it is highly expressed in several human tumors especially mesothelioma, ovarian, lung and pancreatic adenocarcinomas. This differential expression of mesothelin makes it an attractive candidate for tumor specific therapy. Our efforts are now focused on exploiting it for mesothelioma therapy using different approaches. These include a chimeric anti-mesothelin monoclonal antibody (MORAb-009);anti mesothelin immunotoxin (SS1P) and an anti-mesothelin drug conjugate (BAY 94-9343).SS1P is a recombinant immunotoxin consisting of the anti-mesothelin Fv linked to a truncated form of the potent bacterial toxin, Pseudomonas exotoxin A. We have previously established the safety and maximum tolerated dose (MTD) of SS1P in phase I clinical trials. Our laboratory studies showing synergy between SS1P and chemotherapy has led to our on-going clinical trial of SS1P in combination with pemetrexed and cisplatin in chemo-nave patients with pleural mesothelioma. Preliminary results of this study show a very high response rate with 8 out of the 13 evaluable patients treated at the maximum tolerated dose (MTD) having partial responses. While the results of this trial are exciting we are also interested in increasing the efficacy of SS1P. Since SS1P is an immunogenic protein majority of patients develop neutralizing antibodies to it that limits treatment to 1 to 2 cycles. My laboratory in collaboration with the Pastan group and the laboratory Dr. Dan Fowler at the NCI have shown that treatment with pentostatin plus cyclophosphamide abrogates the generation of immune response to SS1P in immunocompetent mice. Based on these results we have just started a pilot study to see in patients if pentostatin plus cyclophosphamide can decrease the immunogenicity of SS1P in patients with chemo-refractory mesothelioma and allow repeated administration of SS1P.So far 10 patients have been enrolled on the study and 2 out of 6 evaluable patients have had significant tumor response. We have also completed the single arm phase II clinical trial of MORAb-009 with pemetrexed and cisplatin for front-line therapy of pleural mesothelioma. This clinical trial has met its accrual goal with 89 patients enrolled and is awaiting data analysis. We are also conducting a phase I clinical trial to determine the safety and MTD of the anti-mesothelin antibody drug conjugate BAY 94-9343, which consists of a humanized anti-mesothelin monoclonal antibody linked to the maytansinoid DM4. So far 9 patients with mesothelioma have been treated at the NCI and dose escalation is on-going.In the laboratory we have focused on developing in-vitro and in-vivo models of human mesothelioma. We have established and characterized several early passage tumor cells obtained from ascites and pleural fluid of patients with mesothelioma. We now plan to evaluate the ability of these early passage cells to form tumors in immunodeficient mice. These models are essential to evaluate novel therapeutic agents being developed in LMB.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010816-06
Application #
8552843
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2012
Total Cost
$914,751
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Zhang, Jingli; Khanna, Swati; Jiang, Qun et al. (2017) Efficacy of Anti-mesothelin Immunotoxin RG7787 plus Nab-Paclitaxel against Mesothelioma Patient-Derived Xenografts and Mesothelin as a Biomarker of Tumor Response. Clin Cancer Res 23:1564-1574
Khanna, Swati; Thomas, Anish; Abate-Daga, Daniel et al. (2016) Malignant Mesothelioma Effusions Are Infiltrated by CD3+T Cells Highly Expressing PD-L1 and the PD-L1+Tumor Cells within These Effusions Are Susceptible to ADCC by the Anti-PD-L1 Antibody Avelumab. J Thorac Oncol 11:1993-2005
Zhang, Yi-Fan; Phung, Yen; Gao, Wei et al. (2015) New high affinity monoclonal antibodies recognize non-overlapping epitopes on mesothelin for monitoring and treating mesothelioma. Sci Rep 5:9928
Thomas, Anish; Chen, Yuanbin; Steinberg, Seth M et al. (2015) High mesothelin expression in advanced lung adenocarcinoma is associated with KRAS mutations and a poor prognosis. Oncotarget 6:11694-703
Alewine, Christine; Hassan, Raffit; Pastan, Ira (2015) Advances in anticancer immunotoxin therapy. Oncologist 20:176-85
Kalra, Neetu; Zhang, Jingli; Thomas, Anish et al. (2015) Mesothelioma patient derived tumor xenografts with defined BAP1 mutations that mimic the molecular characteristics of human malignant mesothelioma. BMC Cancer 15:376
Lindenberg, Liza; Thomas, Anish; Adler, Stephen et al. (2015) Safety and biodistribution of 111In-amatuximab in patients with mesothelin expressing cancers using single photon emission computed tomography-computed tomography (SPECT-CT) imaging. Oncotarget 6:4496-504
Keenan, Bridget P; Saenger, Yvonne; Kafrouni, Michel I et al. (2014) A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology 146:1784-94.e6
Miller, Andrew C; Miettinen, Markku; Schrump, David S et al. (2014) Malignant mesothelioma and central nervous system metastases. Report of two cases, pooled analysis, and systematic review. Ann Am Thorac Soc 11:1075-81
Pastan, Ira; Hassan, Raffit (2014) Discovery of mesothelin and exploiting it as a target for immunotherapy. Cancer Res 74:2907-12

Showing the most recent 10 out of 39 publications