The use of chelated radionuclide (Samarium-153-EDTMP) to modulate phenotype of tumor cells and enhance T-cell-mediated killing. Exposing human tumor cells to sublethal doses of external beam radiation upregulates expression of tumor antigen and accessory molecules, rendering tumor cells more susceptible to killing by antigen-specific cytotoxic T lymphocytes (CTLs). This project explored the possibility that exposure to palliative doses of a radiopharmaceutical agent could alter the phenotype of tumor cells to render them more susceptible to T-ell-mediated killing. Here, 10 human tumor cell lines (4 prostate, 2 breast, and 4 lung) were exposed to increasing doses of the radiopharmaceutical samarium-153-ethylenediaminetetramethylenephosphonate (153Sm-EDTMP) used in cancer patients to treat pain due to bone metastasis. Fluorescence-activated cell sorting analysis and quantitative real-time polymerase chain reaction (PCR) analysis for expression of five surface molecules and several tumor-associated antigens involved in prostate cancer were done. LNCaP human prostate cancer cells were exposed to153Sm-EDTMPand incubated with tumor-associated antigen-specific CTL in a CTL killing assay to determine whether exposure to 153Sm-EDTMP rendered LNCaP cells more susceptible to T-cell-mediated killing. Tumor cells up-regulated the surface molecules Fas (100% of cell lines upregulated Fas), carcinoembryonic antigen (90%), mucin-1 (60%), major histocompatibility complex (MHC) class I (50%), and intercellular adhesion molecule-1 (40%) in response to 153Sm-EDTMP. Quantitative real-time PCR analysis revealed additional upregulated tumor antigens. Exposure to 153Sm-EDTMP rendered LNCaP cells more susceptible to killing by CTLs specific for prostate-specific antigen, carcinoembryonic antigen (CEA), and mucin-1. Doses of 153Sm-EDTMP equivalent to palliative doses delivered to bone alter the phenotype of tumor cells, suggesting that 153Sm-EDTMP may work synergistically with immunotherapy to increase the susceptibility of tumor cells to CTL killing. The use of radiolabeled monoclonal antibody to enhance vaccine-mediated T-cell responses. Radiolabeled monoclonal antibodies (mAb) have demonstrated measurable antitumor effects in hematologic malignancies. This outcome has been more difficult to achieve for solid tumors due, for the most part, to difficulties in delivering sufficient quantities of mAb to the tumor mass. Previous studies have shown that nonlytic levels of external beam radiation can render tumor cells more susceptible to T cell-mediated killing. The goal of these studies was to determine if the selective delivery of a radiolabeled mAb to tumors would modulate tumor cell phenotype so as to enhance vaccine-mediated T-cell killing. Here, mice transgenic for human CEA were transplanted with a CEA expressing murine carcinoma cell line. Radioimmunotherapy consisted of yttrium-90 (Y-90)-labeled anti-CEA mAb, used either alone or in combination with vaccine therapy. A single dose of Y-90-labeled anti-CEA mAb, in combination with vaccine therapy, resulted in a statistically significant increase in survival in tumor-bearing mice over vaccine or mAb alone;this was shown to be mediated by engagement of the Fas/Fas ligand pathway. Mice receiving the combination therapy also showed a significant increase in the percentage of viable tumor-infiltrating CEA-specific CD8+ T cells compared to vaccine alone. Mice cured of tumors demonstrated an antigen cascade resulting in CD4+ and CD8+ T-cell responses not only for CEA, but for p53 and gp70. These findings show that systemic radiotherapy in the form of radiolabeled mAb, in combination with vaccine, promotes effective antitumor response, which may have implications in the design of future clinical trials.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010975-03
Application #
8157554
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2010
Total Cost
$408,968
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Morisada, Megan; Clavijo, Paul E; Moore, Ellen et al. (2018) PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation. Oncoimmunology 7:e1395996
Bauman, Julie E; Cohen, Ezra; Ferris, Robert L et al. (2017) Immunotherapy of head and neck cancer: Emerging clinical trials from a National Cancer Institute Head and Neck Cancer Steering Committee Planning Meeting. Cancer 123:1259-1271
Morisada, Megan; Moore, Ellen C; Hodge, Rachel et al. (2017) Dose-dependent enhancement of T-lymphocyte priming and CTL lysis following ionizing radiation in an engineered model of oral cancer. Oral Oncol 71:87-94
Nagaya, Tadanobu; Nakamura, Yuko; Sato, Kazuhide et al. (2017) Near infrared photoimmunotherapy with avelumab, an anti-programmed death-ligand 1 (PD-L1) antibody. Oncotarget 8:8807-8817
Bernstein, Michael B; Krishnan, Sunil; Hodge, James W et al. (2016) Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol 13:516-24
Gameiro, Sofia R; Malamas, Anthony S; Bernstein, Michael B et al. (2016) Tumor Cells Surviving Exposure to Proton or Photon Radiation Share a Common Immunogenic Modulation Signature, Rendering Them More Sensitive to T Cell-Mediated Killing. Int J Radiat Oncol Biol Phys 95:120-30
Garg, Abhishek D; Galluzzi, Lorenzo; Apetoh, Lionel et al. (2015) Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Front Immunol 6:588
Garnett-Benson, Charlie; Hodge, James W; Gameiro, Sofia R (2015) Combination regimens of radiation therapy and therapeutic cancer vaccines: mechanisms and opportunities. Semin Radiat Oncol 25:46-53
Wattenberg, M M; Kwilas, A R; Gameiro, S R et al. (2014) Expanding the use of monoclonal antibody therapy of cancer by using ionising radiation to upregulate antibody targets. Br J Cancer 110:1472-80
Kanagavelu, Saravana; Gupta, Seema; Wu, Xiaodong et al. (2014) In vivo effects of lattice radiation therapy on local and distant lung cancer: potential role of immunomodulation. Radiat Res 182:149-62

Showing the most recent 10 out of 27 publications