The human genome project has identified categorized and sequenced most of the 30,000 or so human genes. Recently the ability to perform massively parallel sequencing of the whole genome has increased with the development of next generation and single molecule sequencers. It is speculated that withing the next 2-5yrs it will be possible to sequence whole human genomes for under $1000. Through collaborative networks my lab has archived >600 clinically annotated neuroblastoma, and >100 rhabdomyosarcoma tumor samples. By bioinformatic techniques we are identifying all know targets in neuroblastoma and rhabdomyosarcoma. We are using microarray and next generation sequencing of the pediatric cancer genome. Our goal is to identify activating mutations that can be targeted for therapy in patients with high risk neuroblastoma, rhabdomyosarcoma, and other pediatric cancers for which there is no currently available therapy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010998-06
Application #
8763297
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
6
Fiscal Year
2013
Total Cost
$1,326,223
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Brohl, Andrew S; Solomon, David A; Chang, Wendy et al. (2014) The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation. PLoS Genet 10:e1004475
Shah, Nilay; Wang, Jianjun; Selich-Anderson, Julia et al. (2014) PBX1 is a favorable prognostic biomarker as it modulates 13-cis retinoic acid-mediated differentiation in neuroblastoma. Clin Cancer Res 20:4400-12