The developing limb is a well studied model for morphogenesis in which many of the regulatory components governing skeletal pattern and growth have been elucidated, providing a strong biological framework for interpreting gene function based on mutant phenotypes. FIR (FBP interacting repressor) is a highly evolutionarily conserved negative regulator of myc transcription present in both vertebrates and Drosophila. The Drosophila homolog (half pint) controls the zone of non-proliferation in the developing embryonic wing disc. The human homolog has been implicated in colorectal cancer;alternatively spliced dominant-interfering forms of FIR are associated with these cancers. Elucidation of the normal function of FIR in mammalian tissues has been hampered by the very early embryonic lethal (prior to implantation) of FIR null mutant embryos, limiting the ability to assess the role of this gene in normal tissue morphogenesis. In collaboration with Dr. Levens (CCR, NCI), who has generated a conditional (floxed) allele of mouse FIR, we are using several Cre drivers to selectively remove FIR from the early limb bud. We want to test whether FIR plays a role in regulating limb outgrowth, and if it does, learn how it acts to regulate growth. In preliminary results, we have found that, surprisingly, loss of FIR function in early limb bud mesoderm results in considerable apoptosis leading to truncations of the limb skeleton. In Drosophila, half pint is a target of Wg (wingless, Wnt) pathway. Interestingly, loss of the Wnt signaling effector, beta-catenin, from limb bud mesoderm also causes limb truncation phenotypes in mouse embryos, related to abnormalities in formation of an early Fgf signaling center in the limb bud (AER, apical ectodermal ridge) that is necessary for limb outgrowth. We are analyzing components of the Wnt pathway to determine whether they are altered in the FIR mutant limbs, along with other analyses of factors and signaling centers critical for cell survival in the early limb. In parallel studies we are analyzing the role of FIR in cell survival and proliferation at the cellular level using conditional mutant derived MEF cells that also carry a conditional tamoxifen-activated Cre recombinase and a floxed-dual fluorescence reporter to allow FACS isolation of recombined (FIR knock-out) cells. These studies will shed new light on the varied roles of FIR in regulating growth, and will have implications for developing cancer therapies that may target function of this Myc-regulator.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Cancer Institute Division of Basic Sciences
Zip Code