Centrosomes play an important role in various cellular processes, including spindle formation and chromosome segregation. They are composed of two orthogonally arranged centrioles, whose duplication occurs only once per cell cycle. Accurate control of centriole numbers is essential for the maintenance of genomic integrity. Although it is well appreciated that polo-like kinase 4 (Plk4) plays a central role in centriole biogenesis, how it is recruited to centrosomes and whether this step is necessary for centriole biogenesis remain largely elusive. Our results demonstrate that Plk4 localizes to distinct subcentrosomal regions in a temporally and spatially regulated manner, and that Cep192 and Cep152 serve as two distinct scaffolds that recruit Plk4 to centrosomes in a hierarchical order. Interestingly, Cep192 and Cep152 competitively interacted with the cryptic polo box (CPB) of Plk4 through their homologous N-terminal sequences containing acidic-alpha-helix and N/Q-rich motifs. Consistent with these observations, the expression of either one of these N-terminal fragments was sufficient to delocalize Plk4 from centrosomes. Furthermore, loss of the Cep192- or Cep152-dependent interaction with Plk4 resulted in impaired centriole duplication that led to delayed cell proliferation. Thus, the spatiotemporal regulation of Plk4 localization by two hierarchical scaffolds, Cep192 and Cep152, is critical for centriole biogenesis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC011518-01
Application #
8763581
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2013
Total Cost
$324,842
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Chang, Jaerak; Seo, Sang Gwon; Lee, Kyung Ho et al. (2013) Essential role of Cenexin1, but not Odf2, in ciliogenesis. Cell Cycle 12:655-62