During the present reporting period, significant progress was made on this research project. We found that blockade of brain dopamine D3 receptors by our lead proof-of-concept dopamine D3 receptor antagonist SB277011A inhibits methamphetamine self-administration and methamphetamine-triggered reinstatement of drug-seeking behavior in laboratory rats. This constitutes a major advance in the field, as methamphetamine is a major drug of abuse against which very few putative anti-addiction pharmacotherapies have shown any positive effects in animal models of addiction. During this reporting period, we also studied the selective dopamine D3 receptor antagonist PG01037. We found that PG01037 shares a very similar profile of action in animal models of addiction as our lead compound SB277011A - PG01037 does not alter intravenous methamphetamine self-administration when the cocaine is available under low-effort high-payoff conditions, PG01037 significantly lowers the progressive-ratio breakpoint for intravenous methamphetamine self-administration under progressive-ratio reinforcement conditions (reflecting decreased incentive motivation to self-administer methamphetamine), PG01037 significantly inhibits methamphetamine-associated cue-triggered relapse to drug-seeking behavior in animals behaviorally extinguished and pharmacologically weaned from methamphetamine, and PG01037 significantly inhibits methamphetamine-enhanced brain stimulation reward. These findings suggest that that the D3 antagonist PG01037 appears to possess the same anti-addiction profile observed with our lead proof-of-concept compounds SB277011A and NGB2904. This is an important finding because, as noted above, methamphetamine has to date proven to be remarkably resistant to previous putative anti-addiction pharmacotherapies. Also during the present reporting period, we started studying the novel selective dopamine D3 receptor antagonist YQA14. We found that YQA14 inhibits intravenous cocaine self-administration under fixed-ratio reinforcement in laboratory rats, and also significantly attenuates intravenous cocaine self-administration under progressive-ratio reinforcement in laboratory rats - revealing a significant decrease in incentive motivation to self-administer cocaine. At the same time, YQA14 does not alter self-administration of the natural rewarding substance sucrose. This is in line with our previous findings with our two lead proof-of-concept compounds SB277011A and NGB2904 that selective dopamine D3 receptor antagonism blocks drug reward but not natural biologically essential rewards such as food, water, or sex. In addition, we found that YQA14 does not alter cocaine-enhanced locomotion at doses that significantly inhibit cocaine self-administration, showing that YQA14's anti-cocaine effect is not merely due to nonspecific inhibition of motoric ability. In addition, we found that YQA14 dose-dependently inhibits intravenous cocaine self-administration (under both fixed-ratio and progressive-ratio reinforcement conditions) in wild-type mice but not in dopamine D3 receptor gene-deleted mice. This shows that the anti-addiction effects of YQA14 are indeed mediated via the dopamine D3 receptor in the brain. Thus, YQA14 now joins SB277011A and NGB2904 as an extremely promising anti-addiction medication, adding yet more weight to our previous findings that selective dopamine D3 receptor antagonists appear to have anti-addiction, anti-craving, and anti-relapse efficacy that may well translate to clinical efficacy in human drug addiction. Using two new additional animal behavioral models, we further found that our lead proof-of-concept compound SB277011A reverses conditioned place aversion produced by naloxone-precipitated opiate withdrawal in rats - suggesting efficacy of selective dopamine D3 receptor antagonists for treating opiate withdrawal dysphoria. And we found that SB277011A very robustly inhibits incubation of cocaine craving in laboratory rats, with locus of action in the brain being the nucleus accumbens and central amygdala (as determined by discrete focal intracerebral microinjections of SB277011A) - suggesting potential efficacy of selective dopamine D3 antagonists for treating time-dependent incubation of psychostimulant craving in human addicts. These two most recent findings significantly broaden the range of pathognomonic symptoms of drug addiction against which selective dopamine D3 antagonists show efficacy - a very important development in this research field.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Institute on Drug Abuse
Zip Code
Kumar, Vivek; Bonifazi, Alessandro; Ellenberger, Michael P et al. (2016) Highly Selective Dopamine D3 Receptor (D3R) Antagonists and Partial Agonists Based on Eticlopride and the D3R Crystal Structure: New Leads for Opioid Dependence Treatment. J Med Chem 59:7634-50
Sushchyk, Sarah; Xi, Zheng-Xiong; Wang, Jia Bei (2016) Combination of Levo-Tetrahydropalmatine and Low Dose Naltrexone: A Promising Treatment for Prevention of Cocaine Relapse. J Pharmacol Exp Ther 357:248-57
Fraser, Kurt M; Haight, Joshua L; Gardner, Eliot L et al. (2016) Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors. Behav Brain Res 305:87-99
Ashby Jr, Charles R; Rice, Onarae V; Heidbreder, Christian A et al. (2015) The selective dopamine D3 receptor antagonist SB-277011A significantly accelerates extinction to environmental cues associated with cocaine-induced place preference in male Sprague-Dawley rats. Synapse 69:512-4
Rice, Onarae V; Schonhar, Charles A; Gaál, J et al. (2015) The selective dopamine D? receptor antagonist SB-277011-A significantly decreases binge-like consumption of ethanol in C57BL/J6 mice. Synapse 69:295-8
Ashby Jr, Charles R; Rice, Onarae V; Heidbreder, Christian A et al. (2015) The selective dopamine D? receptor antagonist SB-277011A attenuates drug- or food-deprivation reactivation of expression of conditioned place preference for cocaine in male Sprague-Dawley rats. Synapse 69:336-44
Song, Rui; Bi, Guo-Hua; Zhang, Hai-Ying et al. (2014) Blockade of D3 receptors by YQA14 inhibits cocaine's rewarding effects and relapse to drug-seeking behavior in rats. Neuropharmacology 77:398-405
Rice, Onarae V; Heidbreder, Christian A; Gardner, Eliot L et al. (2013) The selective D? receptor antagonist SB-277011A attenuates morphine-triggered reactivation of expression of cocaine-induced conditioned place preference. Synapse 67:469-75
Song, Rui; Zhang, Hai-Ying; Peng, Xiao-Qing et al. (2013) Dopamine D(3) receptor deletion or blockade attenuates cocaine-induced conditioned place preference in mice. Neuropharmacology 72:82-7
Song, Rui; Yang, Ri-Fang; Wu, Ning et al. (2012) YQA14: a novel dopamine D3 receptor antagonist that inhibits cocaine self-administration in rats and mice, but not in D3 receptor-knockout mice. Addict Biol 17:259-73

Showing the most recent 10 out of 17 publications