The Saupe matrix describing protein alignment in a liquid crystalline medium contains five independent elements, enabling the generation of up to five linearly independent alignment conditions. Measurement of internuclear residual dipolar couplings (RDCs) by NMR spectroscopy under these conditions, orthogonal in five-dimensional alignment space, provides access to the amplitude, asymmetry, and direction of motions of the internuclear vector. We previously demonstrated for the small protein domain GB3 (56 residues) that suitably orthogonal alignment conditions can be generated in a single liquid crystalline medium of Pf1 phage, by generating a series of conservative mutants that have negligible impact on the time-averaged backbone structure of the domain. Mutations involve changes in the charge of several solvent-exposed sidechains, as well as extension of the protein by either an N- or C-terminal His-tag peptide, commonly used for protein purification. These protein mutants map out the five-dimensional alignment space, providing unique insights into the structure and dynamics, and providing access to anisotropic parameters such as the 13C, 15N and 1H chemical shielding tensors. Rather than modifying the charge distribution to alter protein alignment, we have demonstrated that for detergent-solubilized systems it is also possible to change alignment by altering the detergent and lipid composition of the sample. Moreover, we have demonstrated that the anti-viral and anti-bacterial molecule squalamine can adopt a liquid crystalline phase suitable for protein alignment. Relatively strong alignment of the protein ubiquitin allowed the conclusion by others regarding the presence of large backbone motions on a slow (>10 ns) time scale to be re-addressed. Our newly measured RDCs in squalamine medium are largely inconsistent with the literature conclusions and point to a much narrower range of motions for regions of the protein engaged in secondary structure, whereas for loop regions the data fit well to the ensemble of conformations observed in crystallographic studies. We have developed and demonstrated new methods for obtaining experimental data sets that correspond to purely orthogonal alignment tensors, thereby removing the intrinsic correlation present between RDC values measured under a variety of alignment conditions. Application to the fusion peptide of hemagglutinin provided unique insights into its structure and internal dynamics.

Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2014
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
Zip Code
Chiliveri, Sai Chaitanya; Louis, John M; Ghirlando, Rodolfo et al. (2018) Tilted, Uninterrupted, Monomeric HIV-1 gp41 Transmembrane Helix from Residual Dipolar Couplings. J Am Chem Soc 140:34-37
Marchant, Jan; Bax, Ad; Summers, Michael F (2018) Accurate Measurement of Residual Dipolar Couplings in Large RNAs by Variable Flip Angle NMR. J Am Chem Soc 140:6978-6983
Ying, Jinfa; Delaglio, Frank; Torchia, Dennis A et al. (2017) Sparse multidimensional iterative lineshape-enhanced (SMILE) reconstruction of both non-uniformly sampled and conventional NMR data. J Biomol NMR 68:101-118
Roche, Julien; Shen, Yang; Lee, Jung Ho et al. (2016) Monomeric A?(1-40) and A?(1-42) Peptides in Solution Adopt Very Similar Ramachandran Map Distributions That Closely Resemble Random Coil. Biochemistry 55:762-75
Roche, Julien; Ying, Jinfa; Bax, Ad (2016) Accurate measurement of (3)J(HNH?) couplings in small or disordered proteins from WATERGATE-optimized TROSY spectra. J Biomol NMR 64:1-7
Louis, John M; Baber, James L; Ghirlando, Rodolfo et al. (2016) Insights into the Conformation of the Membrane Proximal Regions Critical to the Trimerization of the HIV-1 gp41 Ectodomain Bound to Dodecyl Phosphocholine Micelles. PLoS One 11:e0160597
Ceccon, Alberto; Tugarinov, Vitali; Bax, Ad et al. (2016) Global Dynamics and Exchange Kinetics of a Protein on the Surface of Nanoparticles Revealed by Relaxation-Based Solution NMR Spectroscopy. J Am Chem Soc 138:5789-92
Lee, Jung Ho; Ying, Jinfa; Bax, Ad (2016) Quantitative evaluation of positive ? angle propensity in flexible regions of proteins from three-bond J couplings. Phys Chem Chem Phys 18:5759-70
Roche, Julien; Ying, Jinfa; Shen, Yang et al. (2016) ARTSY-J: Convenient and precise measurement of (3)JHNH? couplings in medium-size proteins from TROSY-HSQC spectra. J Magn Reson 268:73-81
Li, Jingwen; Wang, Yefei; Chen, Jingfei et al. (2016) Observation of ?-Helical Hydrogen-Bond Cooperativity in an Intact Protein. J Am Chem Soc 138:1824-7

Showing the most recent 10 out of 30 publications