The proper intracellular distribution of sterols such as cholesterol is critical for numerous cellular functions, including signal transduction and protein trafficking. Sterols are moved among cellular compartments by both vesicular and poorly understood nonvesicular pathways. We have previously shown that a non-vesicular pathway moves sterols from the plasma membrane (PM) to the endoplasmic reticulum in the yeast S. cerevisiae. We found that this transport requires oxysterol-binding protein (OSBP)-related proteins (ORPs), a large family of lipid-binding proteins that is conserved from yeast to humans. In addition, we have been able to show that some of these yeast ORPs transport sterols and other lipids in vitro. Thus, lipid transport is one of the functions of this important class of proteins. We also found that sterol transport by OSBPs is regulated by particular phosphoinositides (PIPs). Because different PIP-species are enriched in various cellular compartments, PIP-stimulation of ORPs likely serves to regulate the movement of sterols (and possibility other lipids) to particular organelles by ORPs, perhaps in response to cell signaling events. This work is described in a paper in the Journal of Cell Biology. We have continued characteriztion of the yeast ORPs. We have found that all have more than one membrane binding surface and we are in the process of determining how these proteins bind membranes and extract lipids. This work will be described in a manuscript that has been submitted. In a second project, we have established a system to study phospholipids transport between the ER and mitochondria. We find that a conserved complex of ER proteins is required for phospholipid exchange between these organelles. This work is described in a manuscript that will be submitted for publication soon.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2010
Total Cost
$402,464
Indirect Cost
City
State
Country
Zip Code
Choudhary, Vineet; Golani, Gonen; Joshi, Amit S et al. (2018) Architecture of Lipid Droplets in Endoplasmic Reticulum Is Determined by Phospholipid Intrinsic Curvature. Curr Biol 28:915-926.e9
Lin, Cheng-Chao; Kurashige, Mahiro; Liu, Yi et al. (2018) A cleavage product of Polycystin-1 is a mitochondrial matrix protein that affects mitochondria morphology and function when heterologously expressed. Sci Rep 8:2743
Friedman, Jonathan R; Kannan, Muthukumar; Toulmay, Alexandre et al. (2018) Lipid Homeostasis Is Maintained by Dual Targeting of the Mitochondrial PE Biosynthesis Enzyme to the ER. Dev Cell 44:261-270.e6
Hayes, Matthew; Choudhary, Vineet; Ojha, Namrata et al. (2017) Fat storage-inducing transmembrane (FIT or FITM) proteins are related to lipid phosphatase/phosphotransferase enzymes. Microb Cell 5:88-103
Liu, Li-Ka; Choudhary, Vineet; Toulmay, Alexandre et al. (2017) An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J Cell Biol 216:131-147
Michaud, Morgane; Prinz, William A; Jouhet, Juliette (2017) Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J 284:376-390
Prinz, William A (2017) A cholesterol-sensing mechanism unfolds. J Biol Chem 292:19974-19975
Kannan, Muthukumar; Lahiri, Sujoy; Liu, Li-Ka et al. (2017) Phosphatidylserine synthesis at membrane contact sites promotes its transport out of the ER. J Lipid Res 58:553-562
Murley, Andrew; Yamada, Justin; Niles, Bradley J et al. (2017) Sterol transporters at membrane contact sites regulate TORC1 and TORC2 signaling. J Cell Biol 216:2679-2689
Michaud, Morgane; Gros, Valérie; Tardif, Marianne et al. (2016) AtMic60 Is Involved in Plant Mitochondria Lipid Trafficking and Is Part of a Large Complex. Curr Biol 26:627-39

Showing the most recent 10 out of 36 publications