In order to investigate how energy expenditure changes with over and underfeeding the following studies are underway. In one study, after careful calibration of weight maintenance EE, individuals undergo a series of measurements of 24 hour EE in a respiratory chamber in which they are fasting or overfed (by 200% of weight maintenance needs) a series of diets that vary in macronutrient content. This is to further investigate whether low or high protein diets may improve the detection of recruitment of adaptive thermogenesis. In addition, behavioral, metabolic and hormonal tests are performed to examine associated characteristics and to investigate the mechanism of the changes in EE. These individuals will also be followed up long term to look at what factors predict weigh change. Results from the first 19 individuals to complete this study have found that the change in energy expenditure with fasting and with overfeeding is reproducible. In addition, the increase in energy expenditure with overfeeding was highest in those overfed a normal protein high fat or high carbohydrate diet. Energy expenditure did not increase significantly with low protein diets. Based on the difference in energy expenditure measured during fasting and overfeeding, the thermic effect of food (TEF) can be calculated. We have found that TEF is inversely associated with adiposity. Thus TEF may predispose to weight gain or be an adaptation to increased bodyweight. As increased adiposity may insulate against trans-abdominal heat loss which may increase TEF, we are investigating the effect of central insulation on the EE and TEF changes associated with overfeeding. We are also continuing to measure EE with overfeeding and fasting, and investigating whether these changes predict longer term weight gain. Because of the recent discovery of the presence of brown fat in humans and its possible role in thermogenesis, we performed positron emission scans with labeled glucose. As brown fat is activated by cold temperatures, we have established that we can visualize brown fat after 2 hours of exposure to 16 degrees Celsius. We then currently investigated whether individuals with visualized brown fat after cold exposure, have visualized brown fat after overfeeding. Following demonstration of visible brown fat after cold exposure individuals were overfed by 200% of their energy needs using a high fat normal protein diet while in our metabolic chamber. The next morning they underwent a PET-CTscan;this was performed in some individuals prior to breakfast (approximately 12 hours after their last overfeeding meals) and in some individuals following a similar overfeeding breakfast (approximately 4 hours after their last meal). We found no evidence of activation of brown fat with overfeeding following a high fat overfeeding, indicating that brown fat does not mediate the increased energy expenditure associated with overfeeding. We are planning to investigate whether brown fat might be activated following 24 hours of high carbohydrate overfeeding. In a related study, after measurement of EE with over and underfeeding, and also after undergoing a series of metabolic and behavioral testing (including biopsies of muscle and fat), individuals areadmitted for 6 weeks of an inpatient dietary protocol involving underfeeding (for overweight and obese individuals) or overfeeding (for lean, obesity resistant individuals). During the inpatient study, all aspects of food intake, energy expenditure, and energy loss are carefully measured to determine if differences in weight gain or loss can be attributed to recruitment of adaptive thermogenesis or other factors. We have currently completed 12 individuals who have undergone the weight loss study.We have not found any association between the initial energy expenditure changes with overfeeding and fasting and weight loss. However, we have been able to calculate the calorie balance in each individual (the amount of calories fed versus those excreted) and compared them to overall weight loss. Even when accounting for changes in energy expenditure and physical activity during weight loss, we have found that there in some individuals there is a large difference between the weight loss and the amount of calories we can measure;that is some individuals lost more weight than expected based on the calorie deficit. We are investigating factors which may explain this difference. . Recruitment for both studies is ongoing.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Reinhardt, M; Schlögl, M; Bonfiglio, S et al. (2016) Lower core body temperature and greater body fat are components of a human thrifty phenotype. Int J Obes (Lond) 40:754-60
Schlögl, Mathias; Piaggi, Paolo; Pannacciuli, Nicola et al. (2015) Energy expenditure responses to fasting and overfeeding identify phenotypes associated with weight change. Diabetes :
Reinhardt, Martin; Thearle, Marie S; Ibrahim, Mostafa et al. (2015) A Human Thrifty Phenotype Associated With Less Weight Loss During Caloric Restriction. Diabetes 64:2859-67
Schlögl, Mathias; Piaggi, Paolo; Thiyyagura, Pradeep et al. (2013) Overfeeding over 24 hours does not activate brown adipose tissue in humans. J Clin Endocrinol Metab 98:E1956-60
Thearle, Marie S; Pannacciulli, Nicola; Bonfiglio, Susan et al. (2013) Extent and determinants of thermogenic responses to 24 hours of fasting, energy balance, and five different overfeeding diets in humans. J Clin Endocrinol Metab 98:2791-9