OF WORK: Our studies of mammalian DNA polymerase beta have pioneered the use of a coordinated approach of structural studies (x-ray crystallography, NMR, and spectroscopy), biochemical studies, and mammalian genetic studies to understand genomic stability in mammalian cells. This approach has allowed us to establish the cellular role(s) of DNA polymerase beta in mammalian base excision repair. And, the approach has allowed us to establish a solid framework for future studies of individual amino acid residues in this enzyme in such important endpoints as cellular response to genotoxicants, the rate of DNA repair, coordination of DNA repair with cellular checkpoint control and also with apoptosis signalling, coordination of deoxyribose phosphate removal (lyase activity) with DNA synthesis, the fidelity of DNA synthesis, the fidelity of overall DNA base excision repair, and DNA lesion bypass. Rational drug design, targeting one or more of these features will allow us to strategically regulate base excision repair with DNA polymerase beta specific drugs. Such agents may be useful in cancer chemotherapy and in helping us to better understand the role of DNA repair in oncogenesis and other chronic diseases. Detailed structure-function relationship studies of other base excision repair (BER) enzymes and accessory factors, such as FEN-1, PARP-1, XRCC1, DNA ligases I and III, AP endonuclease, and the various DNA glycosylases, will be undertaken in the future. Development of specific inhibitors or other modulators for these enzymes will allow us to strategically de-regulate base excision repair in cells. This will have implications for chemotherapy and for understanding the role of DNA repair in preventing disease after exposure to environmental toxicants.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Horton, Julie K; Stefanick, Donna F; Prasad, Rajendra et al. (2014) Base excision repair defects invoke hypersensitivity to PARP inhibition. Mol Cancer Res 12:1128-39
Prasad, Rajendra; Horton, Julie K; Chastain 2nd, Paul D et al. (2014) Suicidal cross-linking of PARP-1 to AP site intermediates in cells undergoing base excision repair. Nucleic Acids Res 42:6337-51
Ca?layan, Melike; Batra, Vinod K; Sassa, Akira et al. (2014) Role of polymerase ? in complementing aprataxin deficiency during abasic-site base excision repair. Nat Struct Mol Biol 21:497-9
Wilson, Samuel H (2014) The dark side of DNA repair. Elife 3:e03068
Freudenthal, Bret D; Beard, William A; Wilson, Samuel H (2014) Watching a DNA polymerase in action. Cell Cycle 13:691-2
Beard, William A; Wilson, Samuel H (2014) Structure and mechanism of DNA polymerase ?. Biochemistry 53:2768-80
Oertell, Keriann; Chamberlain, Brian T; Wu, Yue et al. (2014) Transition state in DNA polymerase ? catalysis: rate-limiting chemistry altered by base-pair configuration. Biochemistry 53:1842-8
Bienstock, Rachelle J; Beard, William A; Wilson, Samuel H (2014) Phylogenetic analysis and evolutionary origins of DNA polymerase X-family members. DNA Repair (Amst) 22:77-88
Sassa, Akira; Ça?layan, Melike; Dyrkheeva, Nadezhda S et al. (2014) Base excision repair of tandem modifications in a methylated CpG dinucleotide. J Biol Chem 289:13996-4008
Kirby, Thomas W; Derose, Eugene F; Beard, William A et al. (2014) Substrate rescue of DNA polymerase ? containing a catastrophic L22P mutation. Biochemistry 53:2413-22

Showing the most recent 10 out of 26 publications