Mitochondrial diseases are devastating disorders for which there is no cure and no proven treatment. About 1 in 2000 individuals are at risk of developing a mitochondrial disease sometime in their lifetime. Half of those affected are children who show symptoms before age 5 and approximately 80% of these will die before age 20. The human suffering imposed by mitochondrial and metabolic diseases is enormous, yet much work is needed to understand the genetic and environmental causes of these diseases. Mitochondrial genetic diseases are characterized by alterations in the mitochondrial genome, as point mutations, deletions, rearrangements, or depletion of the mitochondrial DNA (mtDNA). The mutation rate of the mitochondrial genome is 10-20 times greater than of nuclear DNA, and mtDNA is more prone to oxidative damage than is nuclear DNA. Mutations in human mtDNA cause premature aging, severe neuromuscular pathologies and maternally inherited metabolic diseases, and influence apoptosis. The primary goal of this project is to understand the contribution of the replication apparatus in the production and prevention of mutations in mtDNA. Since the genetic stability of mitochondrial DNA depends on the accuracy of DNA polymerase gamma (pol gamma), we have focused this project on understanding the role of the human pol gamma in mtDNA mutagenesis. Human mitochondrial DNA is replicated by the two-subunit gamma, composed of a 140 kDa subunit containing catalytic activity and a 55 kDa accessory subunit. The catalytic subunit contains DNA polymerase activity, 3'-5'exonuclease proofreading activity, and 5'dRP lyase activity required for base excision repair. As the only DNA polymerase in animal cell mitochondria, pol gamma participates in DNA replication and DNA repair. The 140 kDa catalytic subunit for pol gamma is encoded by the nuclear POLG gene. To date nearly 200 pathogenic mutations in POLG that cause a wide spectrum of disease including Progressive external ophthalmoplegia (PEO), parkinsonism, premature menopause, Alpers syndrome, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) or sensory ataxic neuropathy, dysarthria, and ophthalmoparesis (SANDO). We have also identified the POLG2 gene for the accessory subunit as a disease allele for PEO and similar mitochondrial disease. We have expanded our analysis of mutations in the POLG2 gene for the acceesory subunit to include a potential dominant POLG2 mutation (p.R369G) in a patient with adPEO and multiple mtDNA deletions. Biochemical studies of the recombinant mutant p55 protein showed a reduced affinity to the pol γp140 subunit, leading to impaired processivity of the holoenzyme complex but did not show sensitivity to N-ethylmalaimide (NEM) inhibition, inferring a novel disease mechanism. Cyclobutane thymine dimers (T-T) comprise the majority of DNA damage caused by short wavelength ultraviolet radiation. These lesions generally block replicative DNA polymerases and are repaired by nucleotide excision repair or bypassed by translesion polymerases in the nucleus. Mitochondria lack nucleotide excision repair, and therefore, it is important to understand how DNA polymerase gamma interacts with irreparable lesions such as T-T. We performed in vitro DNA polymerization assays to measure the kinetics of incorporation opposite the lesion and bypass of the lesion by pol gamma with a dimer-containing template. Exonuclease-deficient pol gamma bypassed thymine dimers with low relative efficiency;bypass was attenuated but still detectable when using exonuclease-proficient pol gamma. When bypass did occur, pol gamma misincorporated a guanine residue opposite the 3'-thymine of the dimer only 4-fold less efficiently than it incorporated an adenine. Surprisingly, the pol γexonuclease-proficient enzyme excised the incorrectly incorporated guanine at similar rates irrespective of the nature of the thymines in the template. In the presence of all four dNTPs, pol gamma extended the primer after incorporation of two adenines opposite the lesion with relatively higher efficiency compared with extension past either an adenine or a guanine incorporated opposite the 3'-thymine of the T-T. Our results suggest that T-T usually stalls mitochondrial DNA replication but also suggest a mechanism for the introduction of point mutations and deletions in the mitochondrial genomes of chronically UV-exposed cells. In a collaboration with investigators at the National Institute of Aging we investigated the role of RECQ4 in the mitochonadria. RECQL4 is associated with Rothmund-Thomson Syndrome (RTS), a rare autosomal recessive disorder characterized by premature aging, genomic instability, and cancer predisposition. RECQL4 is a member of the RecQ helicase family, and has many similarities to WRN protein, which is also implicated in premature aging. There is no information about whether any of the RecQ helicases play roles in mitochondrial biogenesis, which is strongly implicated in the aging process. Here, we used microscopy to visualize RECQL4 in mitochondria. Fractionation of human and mouse cells also showed that RECQL4 was present in mitochondria. Q-PCR amplification of mitochondrial DNA demonstrated that mtDNA damage accumulated in RECQL4-deficient cells. Microarray analysis suggested that mitochondrial bioenergetic pathways might be affected in RTS. Measurements of mitochondrial bioenergetics showed a reduction in the mitochondrial reserve capacity after lentiviral knockdown of RECQL4 in two different primary cell lines. Additionally, biochemical assays with RECQL4, mitochondrial transcription factor A, and mitochondrial DNA polymerase γshowed that the polymerase inhibited RECQL4's helicase activity. RECQL4 is the first 3'-5'RecQ helicase to be found in both human and mouse mitochondria, and the loss of RECQL4 alters mitochondrial integrity.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
DeBalsi, Karen L; Hoff, Kirsten E; Copeland, William C (2017) Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev 33:89-104
Krasich, Rachel; Copeland, William C (2017) DNA polymerases in the mitochondria: A critical review of the evidence. Front Biosci (Landmark Ed) 22:692-709
DeBalsi, Karen L; Longley, Matthew J; Hoff, Kirsten E et al. (2017) Synergistic Effects of the in cis T251I and P587L Mitochondrial DNA Polymerase ? Disease Mutations. J Biol Chem 292:4198-4209
Van Maldergem, Lionel; Besse, Arnaud; De Paepe, Boel et al. (2017) POLG2 deficiency causes adult-onset syndromic sensory neuropathy, ataxia and parkinsonism. Ann Clin Transl Neurol 4:4-14
Young, Matthew J; Copeland, William C (2016) Human mitochondrial DNA replication machinery and disease. Curr Opin Genet Dev 38:52-62
Copeland, William C; Kasiviswanathan, Rajesh; Longley, Matthew J (2016) Analysis of Translesion DNA Synthesis by the Mitochondrial DNA Polymerase ?. Methods Mol Biol 1351:19-26
Varma, Hemant; Faust, Phyllis L; Iglesias, Alejandro D et al. (2016) Whole exome sequencing identifies a homozygous POLG2 missense variant in an infant with fulminant hepatic failure and mitochondrial DNA depletion. Eur J Med Genet 59:540-5
Kent, Tatiana; Rusanov, Timur D; Hoang, Trung M et al. (2016) DNA polymerase ? specializes in incorporating synthetic expanded-size (xDNA) nucleotides. Nucleic Acids Res 44:9381-9392
Falk, Marni J; Shen, Lishuang; Gonzalez, Michael et al. (2015) Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Mol Genet Metab 114:388-96
Young, Matthew J; Humble, Margaret M; DeBalsi, Karen L et al. (2015) POLG2 disease variants: analyses reveal a dominant negative heterodimer, altered mitochondrial localization and impaired respiratory capacity. Hum Mol Genet 24:5184-97

Showing the most recent 10 out of 48 publications