Tristetraprolin, or TTP, is the prototype of a small family of three known CCCH tandem zinc finger proteins;other known human members of this class are ZFP36L1 and ZFP36L2, while rodents express an additional protein, ZFP36L3. TTP is the best studied member of this family. It is rapidly induced, translocated from the nucleus to the cytosol, and is phosphorylated on serine residues in response to a variety of growth factors and inflammatory stimuli. Mice deficient in TTP develop a complex syndrome consisting of arthritis, wasting, dermatitis, and early death;most aspects of the syndrome are due to an excess of circulating tumor necrosis factor (TNF). TNF is over-produced by macrophages derived from these knockout mice, due to an increase in the stability of its mRNA. Conversely, TTP has been found to bind to and promote the degradation of this mRNA as well as that encoding granulocyte-macrophage colony-stimulating factor (GM-CSF). More recent studies have identified the initial process regulated by TTP as the deadenylation of the mRNA, or removal of its poly(A) tail, thought to be the rate limiting step in mammalian mRNA turnover. Current studies are using a recently developed cell-free TTP-dependent deadenylation assay to try to determine the mechanism of this effect. In addition, attempts are underway to utilize this novel pathway regulating TNF expression as a target for new drugs for the treatment of TNF excess diseases, such as rheumatoid arthritis, Crohns disease, AIDS, cancer and others. Similarly, inhibitors of the interaction between TTP and GM-CSF mRNA may be useful treatments for granulocytopenic diseases. A number of polymorphisms in the TTP gene and related genes have been determined through the NIEHS Environmental Genome Project, and studies are underway that will attempt to correlate these changes with human phenotypes. Finally, within the past several years knockout mice have been generated for the other two TTP-related genes common to mice and humans, as well as the third, rodent specific gene, and ongoing evaluation of their phenotypes should provide new insights into the physiological importance of this interesting gene family. Other ongoing studies in organisms that express only a single TTP family member, such as Drosophila melanogaster, S. pombe, and C. albicans, may help to determine the physiological importance of these proteins in these and econonomically and medically related species, as well as to unravel the mechanisms of action of these important proteins in the regulation of gene expression.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Ball, Christopher B; Rodriguez, Karina F; Stumpo, Deborah J et al. (2014) The RNA-binding protein, ZFP36L2, influences ovulation and oocyte maturation. PLoS One 9:e97324
Teixeira-Coelho, Maria; Guedes, Joana; Ferreirinha, Pedro et al. (2014) Differential post-transcriptional regulation of IL-10 by TLR2 and TLR4-activated macrophages. Eur J Immunol 44:856-66
Gale, Stephen C; Gao, Li; Mikacenic, Carmen et al. (2014) APO?4 is associated with enhanced in vivo innate immune responses in human subjects. J Allergy Clin Immunol 134:127-34
Blackshear, Perry J; Perera, Lalith (2014) Phylogenetic distribution and evolution of the linked RNA-binding and NOT1-binding domains in the tristetraprolin family of tandem CCCH zinc finger proteins. J Interferon Cytokine Res 34:297-306
Lai, Wi S; Perera, Lalith; Hicks, Stephanie N et al. (2014) Mutational and structural analysis of the tandem zinc finger domain of tristetraprolin. J Biol Chem 289:565-80
Blanco, Fernando F; Sanduja, Sandhya; Deane, Natasha G et al. (2014) Transforming growth factor * regulates P-body formation through induction of the mRNA decay factor tristetraprolin. Mol Cell Biol 34:180-95
Bollmann, Franziska; Wu, Zhixiong; Oelze, Matthias et al. (2014) Endothelial Dysfunction in Tristetraprolin-deficient Mice Is Not Caused by Enhanced Tumor Necrosis Factor-* Expression. J Biol Chem 289:15653-65
Cao, Heping; Deterding, Leesa J; Blackshear, Perry J (2014) Identification of a major phosphopeptide in human tristetraprolin by phosphopeptide mapping and mass spectrometry. PLoS One 9:e100977
Mukherjee, Neelanjan; Jacobs, Nicholas C; Hafner, Markus et al. (2014) Global target mRNA specification and regulation by the RNA-binding protein ZFP36. Genome Biol 15:R12
Xu, Xiao-Hui; Deng, Cai-Yun; Liu, Yang et al. (2014) MARCKS regulates membrane targeting of Rab10 vesicles to promote axon development. Cell Res 24:576-94

Showing the most recent 10 out of 28 publications