Coding of task reward value in the dorsal raphe nucleus: The dorsal raphe nucleus and its serotonin-releasing neurons are thought to regulate motivation and reward-seeking. These neurons are known to be active during motivated behavior, but the underlying principles that govern their activity are unknown. Here we show that a group of dorsal raphe neurons encode behavioral tasks in a systematic manner, tracking progress toward upcoming rewards. We analyzed dorsal raphe neuron activity recorded while animals performed two reward-oriented saccade tasks. There was a strong correlation between the tonic activity level of a neuron during behavioral tasks and its encoding of reward-related cues and outcomes. Neurons that were tonically excited during the task predominantly carried positive reward signals. Neurons that were tonically inhibited during the task predominantly carried negative reward signals. Neurons that did not change their tonic activity levels during the task had weak reward signals with no tendency for a positive or negative direction. This form of correlated task and reward coding accounted for the majority of systematic variation in dorsal raphe response patterns in our tasks. A smaller component of neural activity reflected detection of reward delivery. Our data suggest that the dorsal raphe nucleus encodes participation in a behavioral task in terms of its future motivational outcomes. Distinct tonic and phasic anticipatory activity in lateral habenula and dopamine neurons: Dopamine has a crucial role in anticipation of motivational events. To investigate the underlying mechanisms of this process, we analyzed the activity of dopamine neurons and one of their major sources of input, neurons in the lateral habenula, while animals anticipated upcoming behavioral tasks. We found that lateral habenula and dopamine neurons anticipated tasks in two distinct manners. First, neurons encoded the timing distribution of upcoming tasks through gradual changes in their tonic activity. This tonic signal encoded rewarding tasks in preference to punishing tasks and was correlated with classic phasic coding of motivational value. Second, neurons transmitted a phasic signal marking the time when a task began. This phasic signal encoded rewarding and punishing tasks in similar manners, as though reflecting motivational salience. Our data suggest that the habenula-dopamine pathway motivates anticipation through a combination of tonic reward-related and phasic salience-related signals. Multiple timescales of memory in lateral habenula and dopamine neurons: Midbrain dopamine neurons are thought to signal predictions about future rewards based on the memory of past rewarding experience. Little is known about the source of their reward memory and the factors that control its timescale. Here we recorded from dopamine neurons, as well as one of their sources of input, the lateral habenula, while animals predicted upcoming rewards based on the past reward history. We found that lateral habenula and dopamine neurons accessed two distinct reward memories: a short-timescale memory expressed at the start of the task and a near-optimal long-timescale memory expressed when a future reward outcome was revealed. The short- and long-timescale memories were expressed in different forms of reward-oriented eye movements. Our data show that the habenula-dopamine pathway contains multiple timescales of memory and provide evidence for their role in motivated behavior.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAEY000415-08
Application #
8149168
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2010
Total Cost
$549,408
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Ghazizadeh, Ali; Hong, Simon; Hikosaka, Okihide (2018) Prefrontal Cortex Represents Long-Term Memory of Object Values for Months. Curr Biol 28:2206-2217.e5
Ghazizadeh, Ali; Griggs, Whitney; Leopold, David A et al. (2018) Temporal-prefrontal cortical network for discrimination of valuable objects in long-term memory. Proc Natl Acad Sci U S A 115:E2135-E2144
Griggs, Whitney S; Amita, Hidetoshi; Gopal, Atul et al. (2018) Visual Neurons in the Superior Colliculus Discriminate Many Objects by Their Historical Values. Front Neurosci 12:396
Maeda, Kazutaka; Kunimatsu, Jun; Hikosaka, Okihide (2018) Amygdala activity for the modulation of goal-directed behavior in emotional contexts. PLoS Biol 16:e2005339
Hikosaka, Okihide; Kim, Hyoung F; Amita, Hidetoshi et al. (2018) Direct and indirect pathways for choosing objects and actions. Eur J Neurosci :
Amita, Hidetoshi; Kim, Hyoung F; Smith, Mitchell K et al. (2018) Neuronal connections of direct and indirect pathways for stable value memory in caudal basal ganglia. Eur J Neurosci :
Kim, Hyoung F; Amita, Hidetoshi; Hikosaka, Okihide (2017) Indirect Pathway of Caudal Basal Ganglia for Rejection of Valueless Visual Objects. Neuron 94:920-930.e3
Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney et al. (2017) Parallel basal ganglia circuits for decision making. J Neural Transm (Vienna) :
Griggs, Whitney S; Kim, Hyoung F; Ghazizadeh, Ali et al. (2017) Flexible and Stable Value Coding Areas in Caudate Head and Tail Receive Anatomically Distinct Cortical and Subcortical Inputs. Front Neuroanat 11:106
Yasuda, Masaharu; Hikosaka, Okihide (2017) To Wait or Not to Wait-Separate Mechanisms in the Oculomotor Circuit of Basal Ganglia. Front Neuroanat 11:35

Showing the most recent 10 out of 60 publications