Scientists within the Laboratory of Genomic Integrity (LGI) study the mechanisms by which mutations are introduced into damaged DNA. It is now known that many of the proteins long implicated in the mutagenic process are, in fact, low-fidelity DNA polymerases that can traverse damaged DNA in a process termed translesion DNA synthesis (TLS). Most damage-induced (SOS) mutagenesis in Escherichia coli occurs when DNA polymerase V, activated by a RecA nucleoprotein filament (RecA*), catalyzes TLS. The biological functions of RecA* in homologous recombination and in mediating LexA and UmuD cleavage during the SOS response are well understood. In contrast, the biochemical role of RecA* in pol V-dependent mutagenic TLS remains poorly characterized. Proposals for the role of RecA* in TLS have evolved from positioning UmuD'C on primer/template DNA proximal to a lesion, to a dynamic interaction involving displacement of RecA* filaments on the template by an advancing pol V, to a model in which RecA* need not be located in cis on the template strand being copied, but can instead assemble on a separate ssDNA strand to transactivate pol V for TLS. As part of a collaborative study with Myron Goodman (University of Southern California), we addressed the hitherto enigmatic role of RecA* in polV-dependent SOS mutagenesis. We demonstrated that RecA* transfers a single RecA-ATP stoichiometrically from its DNA 3'-end to free pol V (UmuD'2C) to form an active mutasome (pol VMut) with the composition UmuD'C-RecA-ATP. Pol VMut catalyzes TLS in the absence of RecA* and deactivates rapidly upon dissociation from DNA. Deactivation occurs more slowly in the absence of DNA synthesis, while retaining RecA-ATP in the complex. Reactivation of pol VMut is triggered by replacement of RecA-ATP from RecA*. Thus, the principal role of RecA* in SOS mutagenesis is to transfer RecA-ATP to pol V, so as to generate active mutasomal complex for translesion synthesis.

Project Start
Project End
Budget Start
Budget End
Support Year
28
Fiscal Year
2010
Total Cost
$2,476,337
Indirect Cost
City
State
Country
Zip Code
Vaisman, Alexandra; Woodgate, Roger (2018) Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 53:382-402
Henrikus, Sarah S; Wood, Elizabeth A; McDonald, John P et al. (2018) DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli. PLoS Genet 14:e1007161
Vaisman, Alexandra; Woodgate, Roger (2017) Translesion DNA polymerases in eukaryotes: what makes them tick? Crit Rev Biochem Mol Biol 52:274-303
Lee, Deokjae; An, Jungeun; Park, Young-Un et al. (2017) SHPRH regulates rRNA transcription by recognizing the histone code in an mTOR-dependent manner. Proc Natl Acad Sci U S A 114:E3424-E3433
Frank, Ekaterina G; McLenigan, Mary P; McDonald, John P et al. (2017) DNA polymerase ?: The long and the short of it! DNA Repair (Amst) 58:47-51
Frank, Ekaterina G; McDonald, John P; Yang, Wei et al. (2017) Mouse DNA polymerase ? lacking the forty-two amino acids encoded by exon-2 is catalytically inactive in vitro. DNA Repair (Amst) 50:71-76
Jaszczur, Malgorzata; Bertram, Jeffrey G; Robinson, Andrew et al. (2016) Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry 55:2309-18
Maul, Robert W; MacCarthy, Thomas; Frank, Ekaterina G et al. (2016) DNA polymerase ? functions in the generation of tandem mutations during somatic hypermutation of antibody genes. J Exp Med 213:1675-83
Goodman, Myron F; McDonald, John P; Jaszczur, Malgorzata M et al. (2016) Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair (Amst) 44:42-50
Robinson, Andrew; McDonald, John P; Caldas, Victor E A et al. (2015) Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS Genet 11:e1005482

Showing the most recent 10 out of 37 publications