The long-term goals of this project are to 1) understand the role of mitochondria in ischemia-reperfusion injury and cardioprotection; 2) to understand the role of altered ion homeostasis and altered metabolism in ischemia-reperfusion and cardioprotection and 3) to understand changes in cytosolic and mitochondrial signaling involved in cardioprotection and cell death. It is proposed that ischemic preconditioning (PC) initiates signaling that converges on mitochondria and results in cardioprotection. PC is known to involve nitric oxide signaling. We tested the hypothesis that caveolea might serve as a signaling module to transmit signals from G-protein coupled receptors on the plasma membrane to the mitochondria. Nitric oxide (NO) and protein S-nitrosylation (SNO) have been shown to play important roles in ischemic preconditioning (IPC)-induced cardioprotection. Mitochondria are key regulators of preconditioning and most proteins showing an increase in SNO with IPC are mitochondrial. However, it is not clear how IPC transduces NO/SNO signaling to mitochondria. In this study using Langendorff perfused mouse hearts, we found that IPC-induced cardioprotection was blocked by treatment with either N-nitro-L-arginine methyl ester (L-NAME, a constitutive NO synthase inhibitor), ascorbic acid (a reducing agent to decompose SNO), or methyl-b-cyclodextrin (MbCD, a cholesterol sequestering agent to disrupt caveolae). IPC not only activated AKT/eNOS signaling but also led to translocation of eNOS to mitochondria. M-beta;CD treatment disrupted caveolae structure, leading to dissociation of eNOS from caveolin-3 and blockade of IPC-induced activation of the AKT/eNOS signaling pathway. A significant increase in mitochondrial SNO was found in IPC hearts compared to perfusion control, and the disruption of caveolae by Mbeta;CD treatment not only abolished IPC-induced cardioprotection, but also blocked IPC-induced increase in SNO. These results suggest that caveolae transduce IPC-induced eNOS/NO/SNO acute cardioprotective signaling in the heart. Recent data have shown that cardioprotection can result in the import of specific proteins into the mitochondria in a process that involves heat shock protein 90 (HSP90) and is blocked by geldanamycin (GD), a HSP90 inhibitor. To test the hypothesis that an alteration in mitochondrial import is a more widespread feature of cardioprotection, in this study, we used a broad-based proteomics approach to investigate changes in the mitochondrial proteome following cardioprotection induced by inhibition of glycogen synthase kinase (GSK)-3. Mitochondria were isolated from control hearts, and hearts were perfused with the GSK inhibitor SB 216763 (SB) for 15 min before isolation of mitochondria. Mitochondrial extracts from control and SB-perfused hearts were labeled with isotope tags for relative and absolute quantification (iTRAQ), and differences in mitochondrial protein levels were determined by mass spectrometry. To test for the role of HSP90-mediated protein import, hearts were perfused in the presence and absence of GD for 15 min before perfusion with SB followed by mitochondrial isolation and iTRAQ labeling. We confirmed that treatment with GD blocked the protection afforded by SB treatment in a protocol of 20 min of ischemia and 40 min of reperfusion. We found 16 proteins that showed an apparent increase in the mitochondrial fraction following SB treatment. GD treatment significantly blocked the SB-mediated increase in mitochondrial association for five of these proteins, which included annexin A6, vinculin, and pyruvate kinase. We also found that SB treatment resulted in a decrease in mitochondrial content of eight proteins, of which all but two are established mitochondrial proteins. To confirm a role for mitochondrial import versus a change in protein synthesis and/or degradation, we measured changes in these proteins in whole cell extracts. Taken together, these data show that SB leads to a remodeling of the mitochondrial proteome that is partially GD sensitive. We were also interested in examining the physiological role of cyclophilin D. Isolated mitochondria from mice deficient in cyclophilin D (CypD-/-) are less sensitive to Ca2+-induced opening of the mitochondrial permeability transition (MPT) in vitro. Thus, the lack of CypD enables heart mitochondria to take up more Ca2+ before undergoing the MPT. We hypothesize that the MPT serves as a Ca2+-safety valve that can open to release excess Ca2+, but not necessarily result in death. If the MPT is blocked in CypD-/- mice, we hypothesize that matrix Ca2+ (Ca2+m) would be higher in CypD-/- mice compared to WT and this would activate Ca2+-sensitive NADH dehydrogenases (e.g., pyruvate dehydrogenase (PDH) and alpha-ketoglutarate dehydrogenase (alpha-KGDH)), which would in turn, alter oxidative metabolism and increase oxygen consumption. Consistent with this, we found altered expression levels of PDH E1 subunit and the alpha-KGDH E2 subunit in CypD-/- hearts using 2D DIGE proteomicsTherefore, these results demonstrate that the loss of a MPT component, CypD, results in physiological flux changes in the Krebs cycle and oxidative metabolism that are consistent with increased Ca2+m.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Heart, Lung, and Blood Institute
Zip Code
Liu, Julia C; Liu, Jie; Holmström, Kira M et al. (2016) MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep 16:1561-73
Menazza, Sara; Murphy, Elizabeth (2016) The Expanding Complexity of Estrogen Receptor Signaling in the Cardiovascular System. Circ Res 118:994-1007
Lu, Wei; Sun, Junhui; Yoon, Jeong Seon et al. (2016) Mitochondrial Protein PGAM5 Regulates Mitophagic Protection against Cell Necroptosis. PLoS One 11:e0147792
Lam, Maggie P Y; Ping, Peipei; Murphy, Elizabeth (2016) Proteomics Research in Cardiovascular Medicine and Biomarker Discovery. J Am Coll Cardiol 68:2819-2830
Stoehr, Andrea; Yang, Yanqin; Patel, Sajni et al. (2016) Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes. Cardiovasc Res 110:346-58
Murphy, Elizabeth; Ardehali, Hossein; Balaban, Robert S et al. (2016) Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 118:1960-91
Chung, Youn Wook; Lagranha, Claudia; Chen, Yong et al. (2015) Targeted disruption of PDE3B, but not PDE3A, protects murine heart from ischemia/reperfusion injury. Proc Natl Acad Sci U S A 112:E2253-62
Holmström, Kira M; Pan, Xin; Liu, Julia C et al. (2015) Assessment of cardiac function in mice lacking the mitochondrial calcium uniporter. J Mol Cell Cardiol 85:178-82
Murphy, Elizabeth (2015) Solving mitochondrial mysteries. J Mol Cell Cardiol 78:1-2
Finkel, Toren; Menazza, Sara; Holmström, Kira M et al. (2015) The ins and outs of mitochondrial calcium. Circ Res 116:1810-9

Showing the most recent 10 out of 53 publications