Aim 1 Classical neuroscience has proposed two competing models for membrane fusion. In the first, vesicles completely merge with the plasma membrane, dispersing the entirety of their contents. This full fusion model of exocytosis predicts that vesicle contents will spill into the membrane and diffuse away from the site of fusion. In the second, vesicles transiently connect with the plasma membrane and release only a subset of their components. This kiss-and-run model predicts that the vesicle contents will remain within a vesicle cavity and then will be recaptured into the cell mostly intact. To determine which of these two models occurs in neuroendocrine cells, we have imaged single fluorescently-tagged vesicles in living PC12 cells with total internal reflection fluorescent microscopy (TIRF). This method allows us to track and measure the behavior of individual secretory vesicles in real time in living cells. By watching the diffusive behavior of vesicle components before, during, and after fusion, we will determine if (or which of) the two classical models of fusion fit triggered exocytosis of vesicles in PC12 cells. Furthermore, we will measure the behavior of individual vesicles to determine the heterogeneity of vesicle fusion behaviors, their topology, relationships, and regulation by cellular signaling pathway and pathologies.
Aim 2 Dozens of proteins control the docking, fusion, and then recapture of vesicles in excitable cells. The identity and functional roles of many of these proteins have been discovered through a combination of genetics, biochemistry, and electrophysiology. However, the architecture, structure, and structural dynamics of these proteins and their complexes have yet to be determined. In this aim we have begun to map the location, architecture, and dynamics of many proteins proposed to act during exocytosis and endocytosis. To accomplish this, we are using a combination of live cell imaging, super-resolution, and electron microscopy. Through this multi-modal approach, the locations of individual proteins are being compared to the underlying cellular architecture that organizes exocytic and endocytic sites. This will allow us to map the architecture of the plasma membrane along with components of the machinery responsible for vesicle trafficking. These studies will determine the complex three dimensional structure of the exocytic and endocytic machinery in intact mammalian cells.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Heart, Lung, and Blood Institute
Zip Code
Sochacki, Kem A; Dickey, Andrea M; Strub, Marie-Paule et al. (2017) Endocytic proteins are partitioned at the edge of the clathrin lattice in mammalian cells. Nat Cell Biol 19:352-361
Kopek, Benjamin G; Paez-Segala, Maria G; Shtengel, Gleb et al. (2017) Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples. Nat Protoc 12:916-946
Trexler, Adam J; Taraska, Justin W (2017) Two-Color Total Internal Reflection Fluorescence Microscopy of Exocytosis in Endocrine Cells. Methods Mol Biol 1563:151-165
Trexler, Adam J; Sochacki, Kem A; Taraska, Justin W (2016) Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis. Mol Biol Cell 27:2423-34
Taraska, Justin W (2015) Cell biology of the future: Nanometer-scale cellular cartography. J Cell Biol 211:211-4
Graffe, Malkolm; Zenisek, David; Taraska, Justin W (2015) A marginal band of microtubules transports and organizes mitochondria in retinal bipolar synaptic terminals. J Gen Physiol 146:109-17
Taraska, Justin W (2015) SIMply Better Resolution in Live Cells. Trends Cell Biol 25:636-8
Harris, Dinari A; Patel, Sajni H; Gucek, Marjan et al. (2015) Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One 10:e0117495
Yu, Xiaozhen; Strub, Marie-Paule; Barnard, Travis J et al. (2014) An engineered palette of metal ion quenchable fluorescent proteins. PLoS One 9:e95808
Sochacki, Kem A; Shtengel, Gleb; van Engelenburg, Schuyler B et al. (2014) Correlative super-resolution fluorescence and metal-replica transmission electron microscopy. Nat Methods 11:305-8

Showing the most recent 10 out of 15 publications