This project is to determine the molecular basis of how the neuro-vascular interactions lead to their functional interdependence in tissue homeostasis. Given the importance of the vascular niche to support a variety of stem cells, we discovered vascular paracrine signals for neural stem cell (NSC) maintenance. We generated a mouse model for the human disease Cerebral Cavernous Malformation (CCM), that develops CCM disease-like brain hemorrhage and neurologic defects due to conditional deletion of endothelial ccm2, suggesting that the malformed brain vasculature influences the maintenance of functional neuronal network (Hum Mol Genet. 2011). Our genetic ablation of endothelial capillaries in the neurogenic subventricular zone (SVZ) of adult brain demonstrated the importance of the vascular niche in NSC maintenance. We utilize a systematic multi-faceted approach to identify and validate the vascular niche signals involved in maintenance, self-renewal, proliferation and differentiation of neural stem cells (manuscript in revision for publication). We are now evaluating the physiological relevance of the candidate niche signals in vitro and in vivo. Understanding the mechanisms by which vascular niche signals maintain NSCs is an essential prerequisite for the manipulation of NSCs for transplantation therapy of neurological diseases.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Heart, Lung, and Blood Institute
Zip Code
Sato, Yuya; Uchida, Yutaka; Hu, Jingqiong et al. (2017) Soluble APP functions as a vascular niche signal that controls adult neural stem cell number. Development 144:2730-2736
Arnold, Thomas D; Niaudet, Colin; Pang, Mei-Fong et al. (2014) Excessive vascular sprouting underlies cerebral hemorrhage in mice lacking ?V?8-TGF? signaling in the brain. Development 141:4489-99
Okabe, Keisuke; Kobayashi, Sakiko; Yamada, Toru et al. (2014) Neurons limit angiogenesis by titrating VEGF in retina. Cell 159:584-96
Kim, Kee K; Nam, Joseph; Mukouyama, Yoh-Suke et al. (2013) Rbfox3-regulated alternative splicing of Numb promotes neuronal differentiation during development. J Cell Biol 200:443-58
Nam, Joseph; Onitsuka, Izumi; Hatch, John et al. (2013) Coronary veins determine the pattern of sympathetic innervation in the developing heart. Development 140:1475-85
Lee, Cheol; Hu, Jingqiong; Ralls, Sherry et al. (2012) The molecular profiles of neural stem cell niche in the adult subventricular zone. PLoS One 7:e50501
Li, Wenling; Mukouyama, Yoh-suke (2011) Whole-mount immunohistochemical analysis for embryonic limb skin vasculature: a model system to study vascular branching morphogenesis in embryo. J Vis Exp :
Cunningham, Kirk; Uchida, Yutaka; O'Donnell, Erin et al. (2011) Conditional deletion of Ccm2 causes hemorrhage in the adult brain: a mouse model of human cerebral cavernous malformations. Hum Mol Genet 20:3198-206
James, Jennifer M; Mukouyama, Yoh-suke (2011) Neuronal action on the developing blood vessel pattern. Semin Cell Dev Biol 22:1019-27