Modulating tissue responses to stress is an important therapeutic objective. Oxidative and genotoxic stresses caused by ionizing radiation are detrimental to healthy tissues but beneficial for treatment of cancer. CD47 is a signaling receptor for thrombospondin-1 and an attractive therapeutic target because blocking CD47 signaling protects normal tissues while sensitizing tumors to ionizing radiation. Here we utilized a metabolomic approach to define molecular mechanisms underlying this radioprotective activity. CD47-deficient cells and cd47-null mice exhibited global advantages in preserving metabolite levels after irradiation. Metabolic pathways required for controlling oxidative stress and mediating DNA repair were enhanced. Some cellular energetics pathways differed basally in CD47-deficient cells, and the global declines in the glycolytic and tricarboxylic acid cycle metabolites characteristic of normal cell and tissue responses to irradiation were prevented in the absence of CD47. Thus, CD47 mediates signaling from the extracellular matrix that coordinately regulates basal metabolism and cytoprotective responses to radiation injury.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIASC009174-28
Application #
9344111
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
28
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Clinical Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Ramirez, Manuel U; Stirling, Elizabeth R; Emenaker, Nancy J et al. (2018) Thrombospondin-1 interactions regulate eicosanoid metabolism and signaling in cancer-related inflammation. Cancer Metastasis Rev :
Roberts, David D (2017) Extracellular Matrix and Redox Signaling in Cellular Responses to Stress. Antioxid Redox Signal 27:771-773
Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S (2017) Regulation of cellular redox signaling by matricellular proteins in vascular biology, immunology, and cancer. Antioxid Redox Signal :
Miller, Thomas W; Soto-Pantoja, David R; Schwartz, Anthony L et al. (2015) CD47 Receptor Globally Regulates Metabolic Pathways That Control Resistance to Ionizing Radiation. J Biol Chem 290:24858-74
Priya, Mani Krishna; Sahu, Giriraj; Soto-Pantoja, David R et al. (2015) Tipping off endothelial tubes: nitric oxide drives tip cells. Angiogenesis 18:175-89
Thomas, Douglas D; Heinecke, Julie L; Ridnour, Lisa A et al. (2015) Signaling and stress: The redox landscape in NOS2 biology. Free Radic Biol Med 87:204-25
Cook, Katherine L; Soto-Pantoja, David R; Abu-Asab, Mones et al. (2014) Mitochondria directly donate their membrane to form autophagosomes during a novel mechanism of parkin-associated mitophagy. Cell Biosci 4:16
Rogers, Natasha M; Seeger, Franziska; Garcin, Elsa D et al. (2014) Regulation of soluble guanylate cyclase by matricellular thrombospondins: implications for blood flow. Front Physiol 5:134
Navarathna, Dhammika H M L P; Munasinghe, Jeeva; Lizak, Martin J et al. (2013) MRI confirms loss of blood-brain barrier integrity in a mouse model of disseminated candidiasis. NMR Biomed 26:1125-34
Soto-Pantoja, David R; Stein, Erica V; Rogers, Natasha M et al. (2013) Therapeutic opportunities for targeting the ubiquitous cell surface receptor CD47. Expert Opin Ther Targets 17:89-103

Showing the most recent 10 out of 32 publications