The NHLBI Light Microscopy Core Facility (LMF) facility has been in operation for thirteen years. The NHLBI-LMF consists of three people, Dr. Christian A. Combs (Director), Dr. Daniela A. Malide, and Dr. Xufeng Wu (Deputy Director). The facility consists of twenty microscopes located in several locations in buildings 10 and 50 on the main NIH campus in Bethesda, MD. To date we have helped researchers publish more than 190 papers and assisted almost every NHLBI-DIR Center and Branch in the past thirteen years. In 2011-2012 we have help to publish twenty two papers (at the time of this report). Research conducted in the LMF has been on many disease states, basic cell biology, and on development and implementation of new imaging techniques. The general makeup of the NHLBI-LMF reflects the evolving light microscopy needs of NHLBI-DIR researchers and a commitment to provide a maximal level of assistance to the NHLBI mission. The mission of this facility is to provide state-of-the-art equipment, training, and image processing capabilities to assist NHLBI-DIR researchers in experiments involving light microscopy. Researchers that work in this facility can expect support from core personnel to whatever level suits their research. This can include advanced microscopy techniques like intra-vital two-photon microscopy and super-resolution microscopy to more ordinary wide-field imaging with a color camera Our emphasis is on training users to conduct the experiments themselves, although we are available for collaboration and all manner of assistance (experimental planning, data analysis and image processing, etc.) where required. Over the thirteen years this facility has been in existence we have endeavored to provide a flexible and easy to use facility that meets researchers needs and allows them to conduct their experiments in an efficient manner even if they have had no prior microscopy experience. These goals are met in several ways. First, we have an array of microscopes that offer a wide-range of microscopy techniques. These microscopes and the microscopy techniques available have been chosen and developed in response to the specific needs of researchers in the institute. In addition to the microscopes, we provide a full suite of image processing programs in several image processing workstations. Where image-processing capabilities are lacking in these programs we either write our own image processing programs. In summary this facility operates with state of the art equipment and a dedicated team of imaging professionals to further the research mission of the NHLBI-DIR.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Heart, Lung, and Blood Institute
Zip Code
Combs, C A; Smirnov, A; Glancy, B et al. (2014) Compact non-contact total emission detection for in vivo multiphoton excitation microscopy. J Microsc 253:83-92
Sarkar, Susanta K; Bumb, Ambika; Wu, Xufeng et al. (2014) Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence. Biomed Opt Express 5:1190-202
Olszewski, Maciej B; Chandris, Panagiotis; Park, Bum-Chan et al. (2014) Disruption of clathrin-mediated trafficking causes centrosome overduplication and senescence. Traffic 15:60-77
Beach, Jordan R; Shao, Lin; Remmert, Kirsten et al. (2014) Nonmuscle myosin II isoforms coassemble in living cells. Curr Biol 24:1160-6
Neufeld, Edward B; Zadrozny, Leah M; Phillips, Darci et al. (2014) Decorin and biglycan retain LDL in disease-prone valvular and aortic subendothelial intimal matrix. Atherosclerosis 233:113-21
Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy et al. (2014) The association of myosin IB with actin waves in dictyostelium requires both the plasma membrane-binding site and actin-binding region in the myosin tail. PLoS One 9:e94306
Yu, Zhihua; Yu, Panpan; Chen, Hongzhuan et al. (2014) Targeted inhibition of KCa3.1 attenuates TGF-?-induced reactive astrogliosis through the Smad2/3 signaling pathway. J Neurochem 130:41-9
Caviston, Juliane P; Cohen, Lee Ann; Donaldson, Julie G (2014) Arf1 and Arf6 promote ventral actin structures formed by acute activation of protein kinase C and Src. Cytoskeleton (Hoboken) 71:380-94
Park, Yang-Nim; Zhao, Xiaohong; Yim, Yang-In et al. (2014) Hsp104 overexpression cures Saccharomyces cerevisiae [PSI+] by causing dissolution of the prion seeds. Eukaryot Cell 13:635-47
Cooley, Brian C; Nevado, Jose; Mellad, Jason et al. (2014) TGF-? signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 6:227ra34

Showing the most recent 10 out of 48 publications