The foundation of an acute stroke translational research program is an acute stroke clinical service that will assure maximum patient referral and allow rapid identification, screening and recruitment of potential research subjects in the timely fashion needed to study the early events in cerebral ischemia and enroll patients in acute stroke research protocols. Absence of an emergency department and the time constraints on screening and recruitment of acute stroke patients as research subjects has precluded the NIH Clinical Center as the main site of our research projects. Thus, we have established and maintained the clinical, imaging and research infrastructure required to support such a program at local hospitals, Suburban Hospital (SH) in Bethesda, Maryland, and MedStar Washington Hospital Center (MWHC) in DC. These sites also serve as the key training locations for our ACGME accredited vascular neurology fellowship training program. The major elements of this infrastructure include the NIH Stroke Service, a combination of NIH and contractor clinicians stroke neurologists, nurses, clinical fellows, on-site research/nurse coordinators and MRI technologists. The NIH computer network has been extended to each site. In addition NIH has placed a 3T MRI scanner at MWHC and shares a 3T MRI scanner at SH. We maintain our own PACS for images obtained on the MWHC and SH MRI scanners, and developed and maintain a registry for clinical and research patient data. In the past year we screened approximately 1125 patients and enrolled approximately 105 patients into one of our clinical research protocols.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2015
Total Cost
Indirect Cost
City
State
Country
Zip Code
Nadareishvili, Zurab; Luby, Marie; Leigh, Richard et al. (2018) An MRI Hyperintense Acute Reperfusion Marker Is Related to Elevated Peripheral Monocyte Count in Acute Ischemic Stroke. J Neuroimaging 28:57-60
Hitomi, Emi; Simpkins, Alexis N; Luby, Marie et al. (2018) Blood-ocular barrier disruption in patients with acute stroke. Neurology 90:e915-e923
Heo, Hye-Young; Zhang, Yi; Burton, Tina M et al. (2017) Improving the detection sensitivity of pH-weighted amide proton transfer MRI in acute stroke patients using extrapolated semisolid magnetization transfer reference signals. Magn Reson Med 78:871-880
Chiara Ricciardi, Maria; Bokkers, Reinoud P H; Butman, John A et al. (2017) Trauma-Specific Brain Abnormalities in Suspected Mild Traumatic Brain Injury Patients Identified in the First 48 Hours after Injury: A Blinded Magnetic Resonance Imaging Comparative Study Including Suspected Acute Minor Stroke Patients. J Neurotrauma 34:23-30
Burton, Tina M; Luby, Marie; Nadareishvili, Zurab et al. (2017) Effects of increasing IV tPA-treated stroke mimic rates at CT-based centers on clinical outcomes. Neurology 89:343-348
Bernstock, Joshua D; Ye, Daniel G; Griffin, Allison et al. (2017) Cerebral Ischemia Increases Small Ubiquitin-Like Modifier Conjugation within Human Penumbral Tissue: Radiological-Pathological Correlation. Front Neurol 8:738
Song, Sunbin; Bokkers, Reinoud P H; Luby, Marie et al. (2017) Temporal similarity perfusion mapping: A standardized and model-free method for detecting perfusion deficits in stroke. PLoS One 12:e0185552
Alqahtani, Saeed A; Luby, Marie; Nadareishvili, Zurab et al. (2017) Perfusion Deficits and Association with Clinical Outcome in Patients with Anterior Choroidal Artery Stroke. J Stroke Cerebrovasc Dis 26:1755-1759
Livingston, Whitney S; Gill, Jessica M; Cota, Martin R et al. (2017) Differential Gene Expression Associated with Meningeal Injury in Acute Mild Traumatic Brain Injury. J Neurotrauma 34:853-860
Simpkins, Alexis NĂ©tis; Dias, Christian; Norato, Gina et al. (2017) Early Change in Stroke Size Performs Best in Predicting Response to Therapy. Cerebrovasc Dis 44:141-149

Showing the most recent 10 out of 16 publications