The successful outcome of this research project will have a broad impact in neuroscience in addition to optical science and engineering. The PI will use implanted imaging fiber bundles that will enable in vivo imaging as well as spatially-controlled optical stimulation and optical feedback of large-area neural circuits. Current fibers only indiscriminately illuminate large-areas. Optogenetics is expected to make a broad impact in neuroscience, as well as medical science and clinical medicine in the future. This proposed research offers the potential to have an even greater impact by controlling the light stimulus and enhancing specificity in the control of neural circuits. The results of this project will be shared widely amongst the scientific and engineering communities, and also across wide segments of society in outreach activities. The new imaging and visualization capabilities will inspire K-12 students to think about how technology can be used to see things one cannot normally see, and how we can invent new ways of seeing the world around us and discovering new knowledge. Outreach activities will include demos of these imaging fiber bundles and novel light sources to K-12 and community groups through annual Engineering Open House events, as well as integration of these technological methods in Prof. Boppart?s undergraduate ECE/BioE 467 Biophotonics and ECE/BioE 380 Biomedical Imaging courses.

Technical Abstract

Optogenetics is a rapidly developing field with an ever-expanding toolkit of molecular biology techniques to enable light-activated switching and control of cells, most commonly neurons. Equally significant advances have occurred in optical science and engineering. By understanding and exploiting physics-based principles of how light interacts in photonic crystal fibers (PCFs) and within imaging fiber bundles, it is possible to generate, control, and optimize a wide range of new optical parameters for in vivo optogenetic stimulation. Traditionally in in vivo optogenetic applications, light has been sent down single multi-mode optical fibers to diffusely illuminate the brain, relying on the molecular biology of optogenetically-modified neurons for cell and circuit specificity. This EAGER project will uniquely develop and demonstrate the use of imaging fiber bundles, and the generation of specific light pulse parameters to enable spatially-resolved optogenetic stimulation and imaging of neural circuits in vivo. These novel neurotechnologies will enable new investigations underlying behavior and cognition.

Project Start
Project End
Budget Start
2014-09-01
Budget End
2016-12-31
Support Year
Fiscal Year
2014
Total Cost
$300,000
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
DUNS #
City
Champaign
State
IL
Country
United States
Zip Code
61820