Hydropower dams have been an important part of worldwide energy production, but they also have resulted in substantial negative environmental and social outcomes. This project will study a new way to think about hydropower, one that looks not just at energy production as the goal, but as an integrated system that can generate ecological, economic, and societal benefits beyond electricity. The study will model scenarios to assess how hydropower technologies can be deployed in new ways, such as through enhancing production of food by applying river sediments on cropland as fertilizer, or by changing hydropower technology toward smaller dams and in-stream turbines to reduce negative outcomes on river ecology and fish productivity. Along with the training of students and postdocs, a web-based decision support system will be developed to inform stakeholders about alternative hydropower designs and locations, offer options to increase benefits to stakeholders, and serve as a lasting legacy for policy makers, scientists, and local institutions in managing their food, water and energy resources. The scenarios for redesigned hydropower will potentially transform how hydropower is viewed, replacing a top-down approach that mandates a single-minded focus on maximizing energy production with a bottom-up approach informed by the complexity interlinking the food, energy, and water systems. The project will generate innovative solutions that will improve the acceptability of hydropower development in the US, Europe, and across the world.

An estimated 3,700 major dams are currently either planned or under construction worldwide, and they will continue to play significant roles in energy production in the foreseeable future. This study's goal is to develop innovative solutions for hydropower-- not just to produce energy for the national grid, but woven into the surrounding food, water, and institutional systems. The team includes hydroengineers, hydrogeologists, climatologists, biologists and social scientists working in tandem to offer transformative solutions for hydropower development while ensuring that social and environmental benefits outweigh costs. The research teams will assess land cover change to understand deforestation risk in and around dams, and identify agricultural areas that can benefit from sediment application. Coupled hydrological and climate models, linked to land cover changes in different landscape and socio-ecological settings, including international collaborations, will identify better hydropower solutions including ways to move sediments to farms and/or locations for in-stream turbines. Institutional and governance analysis will examine the multi-tiered dimensions that intrude upon the way civil society benefits from hydropower. The project will generate innovative solutions to produce renewable energy from hydropower, increase food production, and lessen negative environmental and social impacts that have reduced the acceptability of hydropower development, in the US, Europe and across the world.

Project Start
Project End
Budget Start
2017-01-01
Budget End
2021-12-31
Support Year
Fiscal Year
2016
Total Cost
$2,618,489
Indirect Cost
Name
Michigan State University
Department
Type
DUNS #
City
East Lansing
State
MI
Country
United States
Zip Code
48824