This research project enables the synthesis of next generation functional polymers (plastics) with precise sequences of building blocks. The precise sequence of the synthesis allows preparation of the polymers in bulk quantities and these quantities enable the researchers to determine the effects of the synthetic sequences on the physical properties of the new polymers. These synthetic methods are readily adoptable by the polymer community because the materials are prepared in one-step from simple starting materials that are commercially available. This project trains graduate students to pursue interfacial research projects that solve problems at the chemistry-materials-chemical engineering interface. The research impact is transferred to the broader community through formal training in general public communication under the auspices of the Alda Center for Communicating Science at Stony Brook University. Using techniques to improve audience engagement and for distilling their message, researchers engage local high school students and college students in understanding the activities of this research.

This project is centered on developing alternating ring-opening metathesis polymerization syntheses that provide materials with monomer-level control of sequence. With the successes in ruthenium catalyst development provide both functional group tolerant and rapidly propagating catalysts, the next goal is to develop monomers that generate materials with previously inaccessible types of nanoscale morphologies. The Sampson laboratory's recent discovery of the bicyclo[4.2.0]oct-1(8)-ene-8-carboxamide-/cyclohexene system allows the preparation of very long, alternating polymers with high monomer economy. An aggressive determination of the scope of the alternating polymer reaction is planned. This project identifies polymer microstructures that can and cannot be achieved. The chemistry research provides a unique opportunity to explore and discover novel nanoscale structures formed as a consequence of precise macromolecular sequence control.

Agency
National Science Foundation (NSF)
Institute
Division of Chemistry (CHE)
Type
Standard Grant (Standard)
Application #
1609494
Program Officer
Nicolay Tsarevsky
Project Start
Project End
Budget Start
2016-08-15
Budget End
2020-07-31
Support Year
Fiscal Year
2016
Total Cost
$565,138
Indirect Cost
Name
State University New York Stony Brook
Department
Type
DUNS #
City
Stony Brook
State
NY
Country
United States
Zip Code
11794