The main objective of this research is to advance the state of the art of Structural Health Monitoring (SHM) systems by creating novel Frequency Selective Structures (FSS) and an FSS-based Impediographic monitoring technique. The proposed approach is based on the concept of concurrent design where the SHM system is no longer retrofitted to an existing structure but, instead, it is designed concurrently with the structure itself. The system is achieved by implementing the idea of Frequency Selective Structure. FSS exploit the concept of mistuned periodic structures as a general framework to synthesize dynamically tailored components with self-focusing vibration energy capabilities. The new structural design approach will allow delivering targeted excitation to the damaged areas even in complex, non homogeneous components. The integration of FSS with the impediographic approach will then enable advanced damage identification capabilities characterized by high sensitivity, high resolution and a minimized transducer and sensory network.

If successful, this research will create a transformative intellectual pathway in synthesizing novel and realistic structural damage identification methods of the next generation for complex mechanical systems. The technology will have general applicability and could be implemented across the aerospace, mechanical and civil engineering fields leading to the next generation of transportation and infrastructure systems having advanced health monitoring capabilities. The proposed technology will also eliminate the barriers that have prevented, to date, the experimental implementation and validation of the impediographic approach. Experimental findings will allow an unprecedented insight into impediography and provide critical inputs to foster its application to diverse fields, such as medical imaging, where remote non-invasive monitoring techniques are of primary importance. The results will be disseminated through classroom teaching, undergraduate and graduate student mentoring, community outreach, and collaboration with potential users.

Project Start
Project End
Budget Start
2012-09-15
Budget End
2016-08-31
Support Year
Fiscal Year
2012
Total Cost
$240,000
Indirect Cost
Name
Regents of the University of Michigan - Ann Arbor
Department
Type
DUNS #
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109