Since the discovery of graphene about ten years ago, atomically-thin nanosheets of different electronic nature have become the focal point for the research community. These nanosheets could be semiconducting, insulating, or semi-metallic, and potentially useful as the basic building-blocks for the next-generation nano-scale manufacturing. This award will address several known challenges in today's semiconductor microfabrication. Research will involve studies of super thin-film implementation, atomic-scale control, self-limiting assembly, and heterogeneous integration. The concept of layer-based smart nanomanufacturing allows for flexible integration of different nanomaterials. The research work will close the gap between science-driven research in nanomaterials and commercial applications. In a broader view, the fabrication strategy could be extended to a large family of two-dimensional and three-dimensional nanostructures. The resulting material systems will potentially impact a variety of areas, including flexible electronics, solar cells, optoelectronics, sensors, and multifunctional integration via innovative engineering. This work will open unique opportunities for students to acquire interdisciplinary research experience in material science, physics, devices, and nanofabrication, creating great synergy in research and learning. The dissemination of scientific discoveries and its inclusion in curriculum development in undergraduate, graduate, and professional education would ensure broad impacts to scientific, educational, and the general public.

The research explores two-dimensional van der Waals functional heterostructures and nano-device technology via a layer-by-layer assembly-based material processing strategy, aimed at establishing a versatile, leap-forward nanofabrication platform that circumvents the well-known issues in the traditional thin-film based fabrication. The research is composed of two tasks: (i) Exploring fundamental behavior of two-dimensional heterostructures made by nanosheets of different nature and discovering key guidelines and pathway towards atomic layer based nanofabrication. (ii) Demonstrating two-dimensional heterostructure field-effect transistor on the material platform and studying the critical design issues including scalability, manufacturability, and reliability. The research aims to acquire in-depth understanding from both scientific and engineering perspective towards developing layer-by-layer assembly-enabled, smart manufacturing strategy potentially applicable to a broad range of nanoscale devices and components, supported by the state-of-the-art nanofab facilities at the University.

Project Start
Project End
Budget Start
2014-09-01
Budget End
2018-08-31
Support Year
Fiscal Year
2014
Total Cost
$300,000
Indirect Cost
Name
Suny Polytechnic Institute
Department
Type
DUNS #
City
Albany
State
NY
Country
United States
Zip Code
12203