Masonry construction comprises a large portion of building construction in the U. S. and the world. Reinforced masonry construction use is increasing in moderate to higher seismic zones because of its apparent features of economy, fire safety, architectural flexibility and ease of construction. The present state of masonry structural analysis and design, and materials and construction technologies does not enable an accurate prediction of building behavior under lateral loads such as seismic loads. In the U.S., masonry buildings are designed and built with methods, codes and standards that rely upon a mixture of working stress methods, empirical rules, and questionable methods for determining allowable stress values. Masonry is also a complex building material because of the large number of design and construction variables which influence the final product configuration and its response under seismic loads. In order to describe the seismic response of masonry buildings it is necessary to develop the fundamental knowledge base to determine basic design methodologies consistent with safety and economic requirements. This research project includes a preliminary and final design of a full-scale test structure, planning and construction of a test facility, preparation of a test plan, construction of the test structure, and conducting a full-scale test of a multistory reinforced masonry building. Analytical modeling developed by other researchers is used to estimate limit states such as yield, peak strength and interstory displacements for families of earthquake probable in the full range of U.S. seismic zones. This project is part of the U.S.-Japan Coordinated Program for Masonry Building Research and the Technical Coordinating Committee for Masonry Research (TCCMAR) Program.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Kariotis & Associates
South Pasadena
United States
Zip Code