Next generation wireless networks will be characterized by larger volume, faster information transfer, and diversity. Wireless industry has been altering conventional license-based spectrum access policies through approaches utilizing unlicensed spectrum. This leads to dynamic spectrum access (DSA), where unlicensed use of a spectrum should avoid harm to licensed users, or should ensure a fair share of spectrum with other unlicensed users. DSA places an additional burden on business operations because revenue needs to be generated over dynamically changing resources, while providing expected quality of service to potential users. Yet, existing high-level approaches for spectrum sharing are not well poised to solve the core problem. Instead, finer-scale spectrum sharing in time, space, and spectrum dimensions is required. Furthermore, at such finer scales, it is essential to consider human behaviors and integrate economics into the tool-set of spectrum sharing. Finally, recent cyber-security concerns necessitate that such a system should incorporate security and privacy in its core. This project designs and develops advanced spectrum sharing techniques at the nexus of spectrum, pricing, and privacy, for next-generation DSA solutions. The project is conducted by an interdisciplinary team of experts in security, operations management, decision science, wireless communication, networking, and optimization. The fundamental results emerging from this research can enable transformative cognitive radio network management and operation solutions. The project supports multiple graduate students. Insights from the proposed collaborative research project between Ohio State and University of Nebraska Lincoln will educate both industry and academia across rural Nebraska and urban Ohio regions.

The project explores four main goals: (1) Secure spectrum resource metering solutions with a Cognitive Secure Cloud Radio Access Networks (CoSeC-RAN) architecture. Preserving the digital base-band data within the network leads to more accurate resource assignment and pricing decisions. (2) Advanced security and privacy-preserving solutions. The novel CoSeC-RAN architecture enables new directions to provide security to and by the network while preserving user privacy. (3) Dynamic pricing algorithms, where prices are updated in real-time based on available capacity and customer load. These pricing algorithms reflect non-stationary and stochastic nature of both available capacity and demand. Customer-specific bandwidth requirements and mechanisms for ensuring customer privacy are incorporated into algorithm design. (4) Spectrum sensing methods with incomplete information. CoSeC-RAN estimates primary signals at secondary user locations, with incomplete information from the network, to ensure minimum interference. Developed solutions are rigorously tested through large-scale simulations and experimentally in a city-wide testbed.

Agency
National Science Foundation (NSF)
Institute
Division of Computer and Network Systems (CNS)
Type
Standard Grant (Standard)
Application #
1731833
Program Officer
Alhussein Abouzeid
Project Start
Project End
Budget Start
2017-10-01
Budget End
2021-09-30
Support Year
Fiscal Year
2017
Total Cost
$435,399
Indirect Cost
Name
University of Nebraska-Lincoln
Department
Type
DUNS #
City
Lincoln
State
NE
Country
United States
Zip Code
68503