Flow cytometry has become an integral tool in biological and biochemical research because it combines the versatility of fluorescence microscopy with the strength of quantitative population-based methods. This NSF MRI award provides funds for the purchase of a BD Accuri C6 Flow Cytometer to introduce and expand the use of flow cytometry at Birmingham-Southern College (BSC). Important for use in an undergraduate research program, the Accuri C6 flow cytometer is compact, cost-effective, and capable of complex cellular fluorescence and counting analyses, supplying the functionality of a full-scale cytometer in a table-top apparatus. The versatility of this instrument will facilitate its use by undergraduate researchers in the Chemistry and Biology Departments in a variety of broad applications. The instrument will be used to quantitatively assess cellular fluorescence of bacteria, yeast, and mammalian cells. In particular, flow cytometry will be used to address important questions in biology and chemistry, such as understanding the mechanisms that regulate membrane trafficking and control cell cycle progression in Schizosaccharomyces pombe, characterization of iron uptake pathways in Staphylococcus aureus, and investigation of the interactions between complex sphingolipid homeostasis and cell physiology in Saccharomyces cerevisiae. The CSampler® accessory will further allow BSC researchers to perform high-throughput fluorescence-based assays for large-scale screening and identification of new avenues for research. Importantly, the ease of setup and use of this instrument makes flow cytometry accessible for researchers at the undergraduate level.

Flow cytometry allows researchers to rapidly quantify fluorescence levels in thousands of individual cells within minutes, providing quantitative information about cell populations that can be used to address many important biological and biochemical research questions. Introduction of flow cytometry will impact undergraduate education at Birmingham-Southern College, a primarily undergraduate liberal arts college of approximately 1300 students with well-regarded programs in biology and chemistry. Typically, one-third of each incoming class expresses an interest in the sciences. Though primarily for undergraduate research, this instrument will have a significant impact on teaching, training, and learning due to (1) the research requirement for all natural science majors at BSC and (2) integration of research into the curriculum of BSC?s teaching laboratories. Our intensive senior research programs are among the greatest strengths of the natural sciences at BSC. Every graduate of these majors must engage in a minimum of two terms of research. This instrument will provide senior research students with the opportunity to utilize an important technology not currently available at the College. Acquisition of this flow cytometer will also significantly impact students enrolled in biology and chemistry courses. Flow cytometry will be incorporated into research-based laboratories in Honors Cell and Molecular Biology, Genetics, Cell Biology, and Biochemistry, exposing students in these courses to flow cytometry data collection and analysis. Students will gain hands-on experience with flow cytometry, impacting the vast majority of science majors at BSC.

Agency
National Science Foundation (NSF)
Institute
Division of Biological Infrastructure (DBI)
Type
Standard Grant (Standard)
Application #
1229016
Program Officer
Robert Fleischmann
Project Start
Project End
Budget Start
2012-10-15
Budget End
2015-09-30
Support Year
Fiscal Year
2012
Total Cost
$86,553
Indirect Cost
Name
Birmingham Southern College
Department
Type
DUNS #
City
Birmingham
State
AL
Country
United States
Zip Code
35254