An award is made to California State University (CSU), Chico to acquire a Fluorescence- Activated Cell Sorting (FACS) machine, an essential scientific instrument in modern biology that provides fast, objective, and quantitative recording of signals from individual cells as well as their physical separation. The FACS machine will enhance the mission of the Department of Biological Sciences and stimulate an interdisciplinary program with the Departments of Chemistry and Computer Science by allowing hands-on, high impact research between undergraduate students, Master's students, and faculty members. This scientific instrument will prepare biology majors for careers in the biological sciences and enhance educational opportunities for students at the undergraduate and Master's level by being utilized in multiple lower- and upper-division classes, advanced research-focused classes, and for individual student research projects outside of the classroom. Importantly, the FACS will catalyze an interdisciplinary effort between scientific departments, improving the educational experience of biology, chemistry, and computer science students by allowing authentic research projects for students to collaborate on. These collaborations are essential; the ability to work together as an interdisciplinary team to solve complex problems is an essential aspect of modern research that many students do not have adequate exposure to. Additionally, acquisition of a FACS machine will establish CSU Chico, a Hispanic- serving public university with a service area that spans 21% of rural California, as a leading undergraduate institution in Northern California for immunology, chemical biology, and bioinformatics. Allowing our diverse student population with different scientific backgrounds to perform interdisciplinary research activities with their peers will build their enthusiasm for research, encouraging students from this traditionally underserved rural population to pursue further studies that combine these research fields. This investment in research capital will also allow faculty and students to attain more research grants, allowing more hands-on, practical, high-impact learning that benefits the community.

In modern biology, deciphering an organism's genome and understanding the effects of changes in the gene expression of a given tissue, organ, and individual cells is now standard methodology, requiring the isolation of individual cells before interrogating changes in their gene expression. Specific research projects enabled by the FACS machine are focused on understanding the genes responsible for the proliferation and maturation of blood stem cells, understanding the differences in gene expression that make blood cell populations heterogeneous, investigating the effects of chemicals on these processes, and elucidating the evolution of the vertebrate immune system. Additionally, the FACS machine will be utilized to study microbial ecology in diverse geological locations in Northern California, to analyze how microbial and viral pathogens infect a wide variety of cells, and to understand plant and animal cell cycle control, the regulation of cell death, and protein expression. Importantly, data generated from these studies requires combining knowledge of biological processes, chemical signaling, and computational analyses, necessitating that biologists, chemists, and computer scientists work together to solve complex problems.

Agency
National Science Foundation (NSF)
Institute
Division of Biological Infrastructure (DBI)
Type
Standard Grant (Standard)
Application #
1626406
Program Officer
Robert Fleischmann
Project Start
Project End
Budget Start
2016-09-01
Budget End
2020-08-31
Support Year
Fiscal Year
2016
Total Cost
$544,343
Indirect Cost
Name
Chico State Enterprises
Department
Type
DUNS #
City
Chico
State
CA
Country
United States
Zip Code
95929