The University of California Santa Barbara will acquire a new molecular beam epitaxy (MBE) system for the growth of high-performance oxide thin films. Numerous research programs at UCSB require the growth of insulating or semiconducting oxide thin films. These include tunable dielectrics for microwave devices, oxide thin films for optoelectronics and sensing, gate dielectrics for the development of CMOS devices employing high-mobility semiconductor channels and for high-electron mobility transistors with reduced gate leakage and high charge densities. These applications require the deposition of structurally perfect oxide thin films with low impurity and point defect concentrations, control over interface atomic structures and compatibility with underlying active device layers. Oxide thin films grown by MBE will allow for the understanding of the basic physics and materials science of oxides that currently lags far behind that of other electronic materials. Experimental testing and realization of the theoretical predictions requires high-quality, pure materials and the atomic layer control afforded by MBE. We anticipate that the high-purity, structurally perfect oxide films synthesized by MBE will lead to new scientific insights that generate new device applications. Graduate students and post-doctoral researchers are the primary 'hands-on' users of MBE at UCSB. The proposed MBE system will be operated as a shared facility, impacting the education and training of a large number of students in a wide range of interdisciplinary research activities at UCSB and collaborating academic institutions - we will build on the strong culture for MBE of compound semiconductors at UCSB and house the tool in the same large shared facility. Formal training in MBE is offered in graduate courses and weekly MBE seminars in the Materials Department while hands-on-training is provided by two development engineers. The oxide MBE system will significantly extend the opportunities that have previously been offered to student and teacher research interns and education programs aimed at underrepresented groups.

Lay Abstract

Molecular beam epitaxy is unique among the techniques used for making new electronic materials that enable modern electronic and optical devices, such as transistors and lasers. The performance of these devices depends largely on the degree of materials perfection. In molecular beam epitaxy, layers that are a few atoms thick can be stacked and materials with different electronic properties can be combined. Molecular beam epitaxy allows for unprecedented purity of these layers - the impurity levels can be as low as a few ten parts per billion. The new molecular beam epitaxy system at the University of California Santa Barbara will be utilize these unique capabilities to develop new classes of electronic thin film materials, based on metal oxides. We anticipate that the high-purity, structurally perfect oxide films synthesized by molecular beam epitaxy will lead to new technologies, such as transistors with higher operating speeds and capacitors that enable new wireless communication devices. The oxide molecular beam epitaxy system will contribute greatly to the education and training of students at the University of California Santa Barbara, who will be the primary hands-on-users of the new system. The oxide MBE system will also significantly extend the opportunities that have previously been offered to student and science teacher interns and education programs aimed at underrepresented groups.

Agency
National Science Foundation (NSF)
Institute
Division of Materials Research (DMR)
Type
Standard Grant (Standard)
Application #
0619698
Program Officer
Charles E. Bouldin
Project Start
Project End
Budget Start
2006-09-01
Budget End
2007-08-31
Support Year
Fiscal Year
2006
Total Cost
$472,592
Indirect Cost
Name
University of California Santa Barbara
Department
Type
DUNS #
City
Santa Barbara
State
CA
Country
United States
Zip Code
93106