Non-technical Abstract The aim of this project is to experimentally study the interactions between electrons in two coupled two-dimensional (2D) sheets. When the 2D layers are sufficiently close, interlayer Coulomb interactions result in momentum transfer so that electrons moving in one layer cause those in the second sheet to move in response, a phenomenon known as Coulomb drag. This work will study layered heterostructures of atomically thin materials -- including graphene and insulating boron nitride --to achieve atomic control over the spacing between the conducting layers. This will allow the exploration of Coulomb drag in the strong-coupling limit, and in high-mobility devices where electrical transport is ballistic. These structures are made possible by techniques developed by the Principle Investigators to fabricate ultraclean multi-layered heterostructures by mechanical layering of 2D materials. The primary effort will be a systematic characterization of the drag response in monolayer graphene versus temperature, density, layer separation, and magnetic field. Drag resistance together with inter-layer tunneling will additionally be used to pursue signatures of a theoretically-predicted exciton condensate phase in which spatially indirect excitons consisting of paired electrons and holes confined to separate layers condensed into a superfluid ground state. Careful studies of the Coulomb drag response provides a unique tool in which to study electron-electron interactions in mesoscopic systems, which is expected to have significant impact beyond the study of 2D systems, since electron-electron interactions underlie the rich and complex physics of correlated materials. If successful, this research could also enable revolutionary new low power electronic devices. The collaborative interdisciplinary work will provide training to a postdoctoral researcher as well as providing research experience to high school and junior level undergraduate students. Outreach efforts will focus on expanding long-term relationships with teachers at two affiliated public schools.

Technical Abstract

The aim of this project is to experimentally study Coulomb drag in high mobility double layer quantum wells fabricated from 2D materials, such as graphene and related van der Waals materials, in the strongly interacting limit of small interlayer separation. The primary goal will be a systematic characterization of the drag response in monolayer graphene heterostructures versus temperature, density and interlayer separation, under both zero and finite magnetic field, through transport measurements. Several outstanding questions will be addressed such as the anomalous density and temperature dependences reported previously, origin of the anomalous drag response at the double neutrality point, and the nature of the Hall response in the finite magnetic field regime. Drag resistance together with inter-layer tunneling will additionally be used to pursue signatures of the exciton condensate phase in two regimes (i) electron-hole graphene layers at zero magnetic field, and (ii) electron-electron graphene layers at half filled Landau levels in the quantum Hall regime. The experimental effort will include studies of heterostructures fabricated from bilayer graphene, and mono and few-layer transition metal dichalcogenides where the effect of a bandgap on the exciton binding has so far received no experimental attention. The Coulomb drag response in graphene is not well understood at the most basic level. Theoretical efforts to model this system have yielded conflicting results, none of which well match the few experimental studies that have been reported so far. In this regard the systematic study proposed here promises to lay important groundwork for future understanding of this system, and more generally to provide quantitative boundaries on key physical parameters necessary to accurately model electron transport in graphene such as the strength of electron screening versus density and the specific role of the dielectric environment.

Agency
National Science Foundation (NSF)
Institute
Division of Materials Research (DMR)
Type
Standard Grant (Standard)
Application #
1507788
Program Officer
Germano Iannacchione
Project Start
Project End
Budget Start
2015-06-01
Budget End
2018-12-31
Support Year
Fiscal Year
2015
Total Cost
$405,000
Indirect Cost
Name
Columbia University
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10027