The scanning electron microscope requested in this proposal is an instrument capable of obtaining images of various materials and biological specimens with extremely high (nanoscale) resolution. The instrument also includes capability for analyzing the chemical composition of materials with high precision. The proposed instrument will be used to advance research in several areas of biological, chemical, geological and physical sciences, involving faculty and students across multiple departments in the Fisher College of Science and Mathematics at Towson University (TU). The ultrahigh resolution imaging and chemical analysis offered by the new scanning electron microscope is expected to enable break through discoveries that will impact the fundamental science in these diverse disciplines while also contributing to several technologies that are key to societal advancement and sustenance. Examples from the proposed research projects include enhancing our understanding of how and what chemosensory information is detected, analyzed, encoded, and responded to by the insect nervous system, exploring and manipulating the behavior of materials at extremely small size limits that underlie nanotechnology, harnessing the power of "meta materials" to achieve superconductivity at high temperatures with the potential of revolutionizing many technologies including power transmission and quantum computing, developing catalyst materials that are essential for achieving viable renewable and clean energy technologies, and understanding the mineral biosignature preservation in geological systems which is the key to finding life forms in extraterrestrial habitats. These projects will provide opportunities for active participation of undergraduate and master's students at TU and collaborating institutions, who will be trained and supervised by the faculty members on the use of this advanced instrument for interdisciplinary research. Student research will result in their authorship in journal publications and conference presentations. The research and professional careers of participating students is expected to benefit greatly from the hands-on experience and training on this advanced instrument. In addition, the instrument and the research it enables will also be employed to enhance class room and laboratory instructions in several undergraduate and master's level courses offered by the departments of Biological Sciences, Chemistry, and Physics, Astronomy and Geosciences. The K-12 partners will benefit through outreach activities, such as site visits and demonstrations, involving the instrument.

This award from the Major Research Instrumentation program supports Towson University's (TU) acquisition of a state-of-the-art low vacuum 30keV Schottky field emission scanning electron microscope (FESEM) with capabilities for nanometer resolution in scanning transmission mode (S-TEM), in-situ e-beam patterning, and elemental analysis via energy dispersive X-ray spectroscopy (EDS). The instrument is crucial to meet the needs in ongoing and future research projects in inorganic, electronic, environmental, forensic, entomological and geobiological material. The FESEM will make a decisive impact in generating advanced scientific understanding, increased speed of research turn-around, and technological innovation by researchers at TU and its committed users from neighboring institutions, namely Loyola University of Maryland and Goucher College. Besides being a flexible tool catering to the ongoing inter-disciplinary research at TU, it will fill a void by serving as an in-house imaging, characterization, and structure fabrication instrument. The project addresses distinct research questions in individual and cross-disciplines, while sharing common characterization and fabrication needs. In short, these are: (1) image cuticular structures on the surface and within subsurface pores in biological samples using beam deceleration; (2) the ability to image with nanometer resolution zero-, two- and three-dimensional objects to understand optical property changes; (3) resolve with high resolution quantum sized nano clusters, ferro-fluids, metamaterial superconductors, perovskite catalysts, in S-TEM mode; (4) the ability to obtain high resolution lithographic patterning, and (5) elemental analysis using EDS. This suite of imaging, fabrication and chemical analysis capabilities within the instrument will allow researchers at TU, and its neighbors, to bolster ongoing research activities with student co-authors, while also propelling new learning outcomes in courses. It will equip students with an understanding of key technologies. This educational emphasis of primarily undergraduate institutions, like TU, affords unique opportunities for such training.

Agency
National Science Foundation (NSF)
Institute
Division of Materials Research (DMR)
Type
Standard Grant (Standard)
Application #
1626326
Program Officer
Leonard Spinu
Project Start
Project End
Budget Start
2016-10-01
Budget End
2019-09-30
Support Year
Fiscal Year
2016
Total Cost
$530,545
Indirect Cost
Name
Towson University
Department
Type
DUNS #
City
Towson
State
MD
Country
United States
Zip Code
21252