Specific bonding configurations in ceramic materials enable unique functionalities in a wide range of advanced applications, including superconductive wires in supercomputers, precise gas sensors in automotive exhaust and tilt sensors in consumer electronics. However, these same atomic bonds are also the responsible for the characteristic brittle failure behavior of ceramics. This research is generating new perspectives on fundamental mechanical responses within a class of electrical ceramics necessary to enhance durability without sacrificing electrical performance. By coupling these insights with processing science, this project is accelerating the development of new electroceramic materials and material systems that may drastically expand the existing limits of performance and durability. Through a variety of education and outreach activities, this project also promotes engagement and retention of traditionally underrepresented students. These activities include a high school summer camp for young women interested in material science, integration of industrially relevant, computational tools into undergraduate courses, and expanded mentorship of female graduate students within the college of engineering.

TECHNICAL DETAILS: This project is experimentally establishing a fundamental relationship between otherwise stochastic morphological features and intrinsic toughening mechanism in order to systematically design highly durable, ferroelastic/ferroelectric functional composites. Ferroelastic switching is one of a limited number of intrinsic toughening mechanisms available for advanced ceramics, yet it is not fully utilized due to the largely uncharacterized relationship between localized morphological features, efficient activation of domain nucleation and motion, and resultant improvements in toughness. By bridging this gap using in situ microscopy and targeted micromechanical probes, this research is providing the foundation for accelerated physics-based design of more durable ceramic composite systems. Finally, the state of the art characterization and processing methods used in this project in combination with a data-driven integrated computational materials engineering perspective is enhancing the overall development of graduate students, preparing them for an ever more digitally-reliant materials science industry.

Agency
National Science Foundation (NSF)
Institute
Division of Materials Research (DMR)
Type
Standard Grant (Standard)
Application #
1654182
Program Officer
Lynnette Madsen
Project Start
Project End
Budget Start
2017-06-01
Budget End
2022-05-31
Support Year
Fiscal Year
2016
Total Cost
$550,000
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Type
DUNS #
City
Champaign
State
IL
Country
United States
Zip Code
61820