Recently discovered topological phases in materials such as topological insulators have potential use in (quantum) computational devices that can out-perform standard microchip based computers. The most commonly encountered model for quantum computation, the quantum circuit model, requires challenging, if not impossible, accuracy on the hardware to be of practical value, due to local interactions of the system with the surrounding environment. The topological model based on exotic states of matter, while mathematically more complicated, has a built-in tolerance for such interactions. This research project studies mathematically the application of topological phases of matter to new computational paradigms with potentially significant benefit in quantum computation.

In this project the investigators study mathematical models for topological phases, focusing on their applications to topological quantum computation. Topological phases of matter in two spatial dimensions are well-described in the framework of modular categories, but relatively little is known in three spatial dimensions. A large part of this project is devoted to developing appropriate mathematical models in three spatial dimensions and analyzing the corresponding computational paradigms. Specifically, the project will study (3+1)-dimensional topological quantum field theories and representations of the loop braid group, and symmetry enriched topological order and gauging symmetry. In addition, because locality and universality are two desirable properties for quantum computation that are manifested in the representations of the braid group, this project also aims to formulate conjectures characterizing when these properties hold and to verify and adapt these conjectures where appropriate to better characterize physical and computational aspects. To compare the computational power of topological quantum computers to that of classical computers, the project investigates the complexity of the most natural computation in this setting: topological invariants.

Agency
National Science Foundation (NSF)
Institute
Division of Mathematical Sciences (DMS)
Type
Standard Grant (Standard)
Application #
1411212
Program Officer
Leland Jameson
Project Start
Project End
Budget Start
2015-12-15
Budget End
2019-11-30
Support Year
Fiscal Year
2014
Total Cost
$60,001
Indirect Cost
Name
University of California Santa Barbara
Department
Type
DUNS #
City
Santa Barbara
State
CA
Country
United States
Zip Code
93106