This NSF award supports the acquisition of a Carbon Stable Isotope Analyzer by Montana Tech, which will allow the investigators to continue and expand their research and monitoring efforts in the area of biogeochemical processes affecting rivers, lakes, groundwater and geothermal waters as well as carbon bearing rocks and minerals. The use of environmental isotopes, in general, provides a tool to help researchers interpret and understand processes in natural systems. Carbon stable isotopes, in particular, provide a unique way to "fingerprint" sources of carbon in various environmental compartments (e.g., photosynthetic pathway of plants, biologic vs. geologic vs. atmospheric sources), and can also be used to help quantify rates of processes that influence ecosystem changes over a range of scales (e.g., aerobic and anaerobic respiration, photosynthesis, etc). The range of topics that will be investigated using this instrument is extensive and includes tracking effects of climate change through carbon isotope composition changes on watershed scales; quantifying changes in the processing of carbon through surface and groundwater systems; investigating the sources of dissolved organic carbon (DOC) in drinking water; determining the origins of carbonate minerals in rocks or mineralized veins; determining biotic vs. abiotic sources of methane in natural gas reservoirs; and water-rock interactions associated with CO2 sequestration. This equipment will: 1) expand the investigative capabilities of Montana Tech, the Montana Bureau of Mines and Geology (MBMG) and collaborating researchers across the Montana University System (MUS); 2) facilitate pure and applied research in the general area of aquatic and terrestrial environmental science at a campus that is a non-PhD-granting RUI institution in an EPSCoR state; 3) provide a relatively easy-to-use educational tool that will be integrated into new and existing courses at Montana Tech; 4) provide research opportunities and technical training for multiple graduate and undergraduate students on the theory and application of stable isotope analysis; 5) promote collaboration with the MBMG to better evaluate biogeochemical processes in groundwater and surface water in Montana; and 6) promote interdisciplinary collaboration between Montana Tech and researchers at other units of the MUS, an important objective of the recent Montana NSF-EPSCoR award.

Agency
National Science Foundation (NSF)
Institute
Division of Earth Sciences (EAR)
Type
Standard Grant (Standard)
Application #
1338040
Program Officer
David Lambert
Project Start
Project End
Budget Start
2013-09-01
Budget End
2016-08-31
Support Year
Fiscal Year
2013
Total Cost
$183,615
Indirect Cost
Name
Montana Technological University
Department
Type
DUNS #
City
Butte
State
MT
Country
United States
Zip Code
59701