The research project addresses energy efficiency and sustainability issues of electricity production and consumption in the United States. When the demand on the electric power system peaks, such as on hot summer days, the increased electricity is supplied by inefficient and polluting generators called peaking units. If the demand can be shifted or removed from this peak time, then electricity can be generated and consumed in a sustainable, energy-efficient manner. In this project, we introduce new methods for a coordinated multi-voltage-level energy management system to reduce peak electricity demand, which contributes to a sustainable energy future for the U.S. The project's scope is expected to significantly and positively impact several areas of vital importance to the future electric power system, including the integration, coordination, and deployment of distributed resources in the end-user realm; end-to-end interaction across the electric power system; full deregulation of electricity markets and control centers; and development of the engineering workforce. Additionally, the research will encourage, facilitate, and accelerate the deployment of new technologies in the electric grid and help achieve energy independence, low carbon footprint, reduced peak loads, and full-scale electric deregulation. The proposed intelligent energy management systems and new sustainability metrics may impact other critical energy delivery infrastructures, such as gas and oil delivery systems, transportation, hydroelectric dams (and associated irrigation contracts), deregulated markets, and telecommunications. The research will be disseminated to specific as well as broad audiences and through targeted K-12 STEM education. The success of the project outreach efforts will be evaluated by an independent educator.

To achieve the technical goals of the research project, a unique infrastructural framework is proposed for a coordinated multi-voltage-level multi-aggregation-scale energy management system, extending from the individual end-user asset to the bulk transmission grid, with the goal of optimizing environmental and economic sustainability. This transformational new method utilizes aggregator entities to perform demand response via the aggregation and control of end-user assets (e.g., electric vehicles). Customer incentive pricing, a unique time-varying pricing method for demand response that coexists with bulk power pricing and retail electricity pricing, is introduced and its effectiveness is evaluated under different market and system conditions. To realize the new holistic aggregator-based demand response energy management system, new coordinated stochastic control algorithms will be designed and their applicability for the existing bulk and retail power markets will be evaluated. These algorithms will be assessed using high-fidelity modeling and co-simulation, with respect to newly developed sustainability metrics, market and power system efficiency, and algorithm scalability to a realistic-size power system on a unique test bed.

Project Start
Project End
Budget Start
2016-08-15
Budget End
2020-07-31
Support Year
Fiscal Year
2016
Total Cost
$153,689
Indirect Cost
Name
South Dakota State University
Department
Type
DUNS #
City
Brookings
State
SD
Country
United States
Zip Code
57007