Each year in the Northern Hemisphere, birds, bats, and insects fly north in spring and south in autumn. These aerial migrations have fascinated people for millennia; however, given the difficulty of tracking animals flying through the open skies, little is known about the rules that govern life in the air. Human activities have local and global impacts on these migrations by eliminating stopover habitats where migrants rest and refuel during their hazardous journeys and by altering atmospheric conditions. This project asks whether aerial migrants can keep pace with these rapid changes and what traits make some migrants more adaptable to change than others. The collaborative team of biologists and meteorologists will develop and employ advanced animal tracking methods to reveal both the precise locations of birds during migratory flights and the atmospheric conditions they fly through. This tracking will include novel microsensors placed on birds and aerial vehicles to collect heretofore-elusive data streams that reveal the environment experienced by birds in flight. The research team will combine these new observations with weather radar data from across the U.S. that already captures massive quantities of data on migrating birds, bats, and insects as they fly over the countryside. This combination of new and existing data may yield novel insights into migrant behavior within their changing atmospheric habitats. By bringing together scientists across disciplines, this research will develop and test different ways to enhance communication, collaboration, and teamwork among the next generation of students and their teachers. Finally, this project will communicate to the public how the changing environment influences the timing of migration over and through their communities. Workshops in schools and community centers and work with local landowners will foster "citizen science" and adaptive strategies to contribute to this national effort.

To uncover scaling rules that control phenology of life in the air, this study implements a research framework that integrates the spatiotemporal rescaling hypothesis and the metabolic theory of ecology. From this basis the study predicts that seasonal phenology of aerial migration is accelerating in response to environmental changes and that small-bodied migrants should have a greater capacity to speed up migration than larger-bodied migrants. The project studies the central flyway of North America and focuses on the impact of the central plains low-level jet on aerial migration patterns. The low-level jet is a prominent feature of the North American atmosphere to which many aerial migrants are known to be highly adapted. Recent evidence that the low-level jet is both expanding in geographic scope and intensity provides an ideal context for testing the study's predictions. The project team will leverage existing open-access and newly collected data from two coincident aerial migration systems; nocturnal bird and insect migration. Sensors for tracking location and atmospheric conditions will be placed on migratory birds that span two orders of magnitude in body size. Integrated biological and meteorological data will be used to improve our understanding of the rescaling of the low-level jet and to test predictions about how that rescaling impacts the phenology of life in the air.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Emerging Frontiers (EF)
Type
Standard Grant (Standard)
Application #
1840230
Program Officer
Daniel Gruner
Project Start
Project End
Budget Start
2019-01-01
Budget End
2021-12-31
Support Year
Fiscal Year
2018
Total Cost
$999,655
Indirect Cost
Name
University of Oklahoma
Department
Type
DUNS #
City
Norman
State
OK
Country
United States
Zip Code
73019