Opioid use disorder (OUD) has grown to epidemic proportions over the past few decades, affecting millions of Americans and contributing to tens of thousands of deaths each year. While medication is a cornerstone for the treatment of OUD, current therapeutics act upon the mu opioid receptor (MOR) itself. MOR agonists have a high risk of misuse and so their administration must be tightly regulated, while MOR antagonists necessitate a supervised withdrawal period before the beginning of treatment. These requirements create significant barriers to access for people with OUD who seek treatment. An alternative strategy for the treatment of OUD is to target receptors other than MOR which mediate addiction. One such target is the serotonin 2C (5-HT2C) receptor, which exerts tonic inhibition over mesolimbic dopaminergic signaling, the pathway underlying the brain's reward response to stimuli such as drugs of abuse. Preclinical data has validated 5-HT2C agonism as an effective means for treating addiction to cocaine, alcohol, and nicotine. Though less extensively investigated, recent preclinical studies have supported the efficacy of 5-HT2C agonism against opioid addiction as well. In the course of our studies of metabolites of yohimbine natural products, we have designed and synthesized a lead compound exhibiting agonism of 5-HT2C. The objective of my proposal is the further development of a potent, biased, and selective small molecule 5- HT2C agonist followed by efficacy studies in animal models for opioid addiction. Synthesis of analogs of our lead compound will be guided by computational molecular docking and informed by in vitro functional assays for potency, bias, and selectivity, and top analogs will be advanced into pharmacokinetic and toxicity testing. Selected analogs will then be advanced into in vivo efficacy studies, using a drug-induced Conditioned Place Preference assay in mice. This research training plan encompasses medicinal chemistry, organic synthesis, computational modeling, chemical biology, neuroscience, and in vivo assay techniques. It will be carried out as part of a collaborative effort between the Northwestern University Department of Chemistry and the Feinberg School of Medicine Translational Neuropharmacology Program, with further support from outside collaborators.

Public Health Relevance

/Relevance Over the past few decades, opioid use disorder (OUD) has reached epidemic status, affecting millions of Americansandcausingtensof thousandsof deathsper year. Targetingsignalingpathwaysthat regulatethe brain?s response to opioids could lead to new medications for OUD. Toward this end, this proposal seeks to optimize a small molecule, inspired by a natural product, that targets the serotonin-2C receptor as a novel treatmentforOUD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Individual Predoctoral NRSA for M.D./Ph.D. Fellowships (ADAMHA) (F30)
Project #
1F30DA050445-01A1
Application #
9992200
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Babecki, Beth
Project Start
2020-04-01
Project End
2023-03-31
Budget Start
2020-04-01
Budget End
2021-03-31
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
160079455
City
Chicago
State
IL
Country
United States
Zip Code
60611