Structural mutation analysis of PTEN and its possible genotype-phenotype correlations in Endometriosis and Cancer The phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene encodes a tumor suppressor phosphatase frequently mutated in a variety of human cancers. It exerts its function by dephosphorylating phosphatidylinositol 3,4,5-triphosphate (PIP3), converting it to phosphatidylinositol 4,5-bisphosphate (PIP2). PIP3 activates a variety of downstream effectors that turn on the PI3K/Akt oncogenic pathway leading to unregulated cell proliferation and tumorigenesis. Loss of function and somatic missense mutations of PTEN have recently been found in patients with endometriosis, endometrial cancer and ovarian cancer although no structural information on these mutations is currently available. Through the cross-referencing of published literature, the phenotypes of distinct PTEN mutations affecting the signature motif of the catalytic phosphatase domain and C2 domain were identified. Among these mutations, moderate phenotypes were associated with endometriosis and endometrial hyperplasia and are distributed throughout both domains. Whereas the more severe phenotypes were associated with endometrial cancer and ovarian cancer and are clustered in the signature motif (H123CXXGXXR130) that forms the P loop at the bottom of the active site pocket. The signature motif contains residues that play a crucial role in loop conformation (H123 and G127) and are essential for catalysis (C124 and R130). One distinct residue within the active site R130, has mutations implicated in both moderate and severe phenotypes. In this proposed study, we will explore the structural effects that the identified PTEN mutations have on the relationship between genotype and phenotype, and investigate the specific molecular mechanisms involved. Molecular dynamics simulations wil be used to examine the clustered mutations to characterize their effects on P loop conformations and the functional distortions they may impose within the active site as well as mutations within the C2 domain that may affect PTEN's ability to interact with the membrane. We propose mutations within the active site disrupt the electrostatic interaction thus affecting P loop conformation. Loop flexibility imposed by these missense mutations may affect the binding of PTEN to its ligand and adversely affect the PI3K/Akt signaling pathway. Understanding the functional impact that these missense mutations have on the structure of PTEN is essential to elucidating the molecular mechanism of endometriosis, endometrial cancer and ovarian cancer in the development of novel therapeutics.

Public Health Relevance

Endometriosis is a common, highly enigmatic gynecological disease affecting an estimated 176 million women worldwide showing no disparity towards age, ethnic, or social circumstances. Currently there is no known cure, however treatment options are available to manage symptoms associated with the disease. This proposal is aimed at gaining, at the molecular level, an understanding of and mapping the structural alterations (mutations) in PTEN associated with endometriosis and cancer to aid in the development of commercially viable therapeutics in the treatment and ultimately the cure of endometriosis. !

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
1F31CA174316-01
Application #
8459049
Study Section
Special Emphasis Panel (ZRG1-F09-P (08))
Program Officer
Bini, Alessandra M
Project Start
2012-09-12
Project End
2017-09-11
Budget Start
2012-09-12
Budget End
2013-09-11
Support Year
1
Fiscal Year
2012
Total Cost
$27,734
Indirect Cost
Name
University of Houston
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
036837920
City
Houston
State
TX
Country
United States
Zip Code
77204