The ability to cope with environmental stress is essential to cellular survival, forcing organisms to develop sophisticated mechanisms by which cellular components are protected from stress-induced damage. Unfortunately, only little is known about the changes that occur in mRNA metabolism in response to stress. However, recent evidence from S. cerevisiae has shown that Heat Shock Factor (HSF) activates the expression of several genes likely to be involved in mRNA metabolism. One such gene is CTH1, encoding a tandem-zinc-finger protein whose human homologue, TTP, has been shown to promote the degradation of AU-rich element (ARE) containing mRNAs like TNF-alpha and c-fos. Interestingly, mammalian Tis11b, also a homologue of TTP is, like Cth1, inducible by stress, though it is not known if this induction is HSF dependent. Together these findings strongly suggest a role for ARE-mediated mRNA degradation in cellular stress-responses. This proposal aims to elucidate the changes that occur in mRNA metabolism during stress and the importance of these changes in cellular responses to stress. Specifically, I propose to determine the role of Cthl in mediating the degradation of ARE containing mRNAs during heat stress, explore if stress-dependent induction of Tis11b is HSF-dependent, and to characterize mRNAs down regulated by Tisl Ib during stress and explore their role in stress-responses. Lastly, I aim to elucidate if mammalian TTP and Tis11b expressed in yeast preferentially utilize the 5'-3' mRNA decay pathway during times of cell stress. These questions will be explored through the use of microarray analysis, in vivo and in vitro protein-protein and protein-RNA interaction studies, and biochemical experiments to determine the global effects of Cth1, TTP and Tis11b on mRNA half-life. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32GM076954-01A1
Application #
7156073
Study Section
Special Emphasis Panel (ZRG1-F08-G (20))
Program Officer
Dearolf, Charles R
Project Start
2007-01-01
Project End
2008-12-31
Budget Start
2007-01-01
Budget End
2007-12-31
Support Year
1
Fiscal Year
2006
Total Cost
$48,796
Indirect Cost
Name
Duke University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
044387793
City
Durham
State
NC
Country
United States
Zip Code
27705
Neef, Daniel W; Jaeger, Alex M; Gomez-Pastor, Rocio et al. (2014) A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Rep 9:955-66
Neef, Daniel W; Jaeger, Alex M; Thiele, Dennis J (2013) Genetic selection for constitutively trimerized human HSF1 mutants identifies a role for coiled-coil motifs in DNA binding. G3 (Bethesda) 3:1315-24
Neef, Daniel W; Jaeger, Alex M; Thiele, Dennis J (2011) Heat shock transcription factor 1 as a therapeutic target in neurodegenerative diseases. Nat Rev Drug Discov 10:930-44
Batista-Nascimento, Liliana; Neef, Daniel W; Liu, Phillip C C et al. (2011) Deciphering human heat shock transcription factor 1 regulation via post-translational modification in yeast. PLoS One 6:e15976
Neef, Daniel W; Turski, Michelle L; Thiele, Dennis J (2010) Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol 8:e1000291
Neef, Daniel W; Thiele, Dennis J (2009) Enhancer of decapping proteins 1 and 2 are important for translation during heat stress in Saccharomyces cerevisiae. Mol Microbiol 73:1032-42