Cellular stress causes protein misfolding and aggregation, which is combatted by protein chaperone enzymes (disaggregases). In neurons, protein misfolding and aggregation can lead to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, frontotemporal dementia, Parkinson's disease, Huntington's disease, and spinocerebellar ataxias. The lack of viable therapeutic options reflects the dearth of our understanding regarding the cellular processes that go awry in these diseases. Since protein quality control is required for all living organisms, simple model systems such as yeast are powerful tools to study the analogous human process in a rapid and cost-efficient way. This project will leverage high-throughput genetic engineering in yeast to study and engineer human disaggregase systems to combat toxic protein aggregates that underlie Parkinson?s disease and ALS. First, I will test the hypothesis that unique combinations of human hsp110, hsp70, and hsp40 chaperones can impart disaggregase substrate specificity in a cell. I will create and test plasmid libraries for all possible triplet combinations of the known hsp110/70/40 genes in yeast models of Parkinson?s and ALS. Second, I will use eMAGE, a technique that I invented during my PhD, to engineer the previously characterized human disaggregase machinery comprised of hsp110 (Apg-2), hsp70 (Hsc70) and hsp40 (Hdj1). Lastly, I will validate the findings from yeast in human neuronal cell models of Parkinson?s disease and ALS. The experimental pipeline outlined in this proposal leverages the scale and power of yeast genetics to identify Hsp110/70/40 mutants and gene combinations that exhibit rescue of toxicity, which are then experimentally validated in a bona fide human neuron. This project will greatly enhance the current understanding of human disaggregase mechanisms by exhaustively screening the combinatorial space of three-gene chaperone interactions and it will likely identify new mechanisms for candidate therapeutics of Parkinson?s disease and ALS.

Public Health Relevance

The societal impact of neurodegenerative diseases is massive and growing as the population continues to live longer. These diseases are currently considered ?incurable? and there is an urgent need to develop effective treatments using novel approaches. This project will greatly enhance our current understanding of the natural protein chaperone systems that combat Fus, alpha-synuclein, and TDP-43 protein aggregates, which underlie Parkinson?s disease and ALS, to identify new drug target mechanisms and candidate therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32NS108598-01A1
Application #
9729380
Study Section
Neurological Sciences Training Initial Review Group (NST)
Program Officer
Cheever, Thomas
Project Start
2019-09-30
Project End
2022-09-29
Budget Start
2019-09-30
Budget End
2020-09-29
Support Year
1
Fiscal Year
2019
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Biochemistry
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104