The objective of the proposed NIDDK K01 award is to develop an independent research program that investigates environmental and behavioral approaches to mitigating multigenerational effects maternal obesity. The candidate is an obesity epidemiologist with strong expertise in environmental and behavioral influences on obesity in adolescents and adults, and a wide range of quantitative methods. The candidate has recent expertise in the perinatal period of the life course and fetal programming of obesity. The candidate's long-term goal is to contribute understanding of how biological susceptibilities programmed in early life interact with a complex system of behaviors and environments through the life course and through multiple generations. The proposed career development goals include gaining expertise in (1) placental biology and its linkages to fetal programming and (2) systems science. This expertise is necessary for innovative transdisciplinary research that integrates biological and epidemiological knowledge to investigate multigenerational obesity processes. This training will be supported by an interdisciplinary mentorship team composed of experts in chronic disease epidemiology (Fortmann; primary mentor), fetal programming and placentology (Thornburg), maternal-fetal medicine (Caughey), and systems science (Wakeland). The proposed research will develop a novel methodology for investigating the effects of maternal obesity over multiple generations. It overcomes the challenge that fetal programming is an inherently multigenerational phenomenon, yet multigenerational research in human populations is not feasible with traditional methods. It uses a complex system modeling technique - agent-based models - to integrate robust empirical data on fetal programming processes and multi-level influences on human behavior in a synthetic population. The model will account for the biological effects of maternal obesity on offspring obesity susceptibility, cumulative impacts of childhood behaviors on prenatal behaviors and health, and other complexities. We will (1) develop and validate the agent-based model, then use it to (2) determine the effects of fetal programming on population-wide and subgroup-specific obesity prevalence over four generations and (3) determine the effects of simulated diet and physical activity changes on population-wide obesity prevalence over four generations. This research will quantify how maternal obesity can induce a positive feedback loop of escalating obesity and provide the first assessment of optimal strategies that yield optimal long-term reductions in obesity prevalence within a complex system. Research and training activities will culminate in submission of R01 applications to investigate how fetal programming propagates multigenerational race/ethnic disparities in obesity-related health (agent-based model), and integration of placental metrics in an epidemiologic study of behavioral factors that remediate fetal programming alterations.

Public Health Relevance

Maternal obesity during pregnancy can induce elevated susceptibility of obesity in the child. Therefore, the rapid increase in maternal obesity over the past three decades is poised to exacerbate the obesity epidemic. This study will develop a novel computational simulation model for studying the impacts of maternal obesity on subsequent generations, and to identify promising public health strategies that reduce obesity in the long-term.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Scientist Development Award - Research & Training (K01)
Project #
5K01DK102857-03
Application #
9346056
Study Section
Kidney, Urologic and Hematologic Diseases D Subcommittee (DDK)
Program Officer
Saslowsky, David E
Project Start
2015-09-30
Project End
2018-09-29
Budget Start
2017-09-30
Budget End
2018-09-29
Support Year
3
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Oregon Health and Science University
Department
Type
Schools of Public Health
DUNS #
096997515
City
Portland
State
OR
Country
United States
Zip Code
97239
Boone-Heinonen, Janne; Sacks, Rebecca M; Takemoto, Erin E et al. (2018) Prenatal Development and Adolescent Obesity: Two Distinct Pathways to Diabetes in Adulthood. Child Obes 14:173-181
Jeanne, Thomas L; Hooker, Elizabeth R; Nguyen, Thuan et al. (2018) High birth weight modifies association between adolescent physical activity and cardiometabolic health in women and not men. Prev Med 108:29-35
Andrea, Sarah B; Messer, Lynne C; Marino, Miguel et al. (2018) Associations of Tipped and Untipped Service Work With Poor Mental Health in a Nationally Representative Cohort of Adolescents Followed Into Adulthood. Am J Epidemiol 187:2177-2185
Grandy, Madeline; Snowden, Jonathan M; Boone-Heinonen, Janne et al. (2018) Poorer maternal diet quality and increased birth weight. J Matern Fetal Neonatal Med 31:1613-1619
Andrea, Sarah B; Hooker, Elizabeth R; Messer, Lynne C et al. (2017) Does the association between early life growth and later obesity differ by race/ethnicity or socioeconomic status? A systematic review. Ann Epidemiol 27:583-592.e5
Boone-Heinonen, J; Tillotson, C J; O'Malley, J P et al. (2017) Characterizing a ""Big Data"" Cohort of Over 200,000 Low-Income U.S. Infants and Children for Obesity Research: The ADVANCE Early Life Cohort. Matern Child Health J 21:421-431
Sacks, Rebecca M; Takemoto, Erin; Andrea, Sarah et al. (2017) Childhood Maltreatment and BMI Trajectory: The Mediating Role of Depression. Am J Prev Med 53:625-633
Winett, Liana; Wallack, Lawrence; Richardson, Dawn et al. (2016) A Framework to Address Challenges in Communicating the Developmental Origins of Health and Disease. Curr Environ Health Rep 3:169-77
Boone-Heinonen, Janne; Messer, Lynne; Andrade, Kate et al. (2016) Connecting the Dots in Childhood Obesity Disparities: A Review of Growth Patterns from Birth to Pre-Adolescence. Curr Epidemiol Rep 3:113-124
Boone-Heinonen, J; Markwardt, S; Fortmann, S P et al. (2016) Overcoming birth weight: can physical activity mitigate birth weight-related differences in adiposity? Pediatr Obes 11:166-73

Showing the most recent 10 out of 11 publications