This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Treatment options for unresectable and advanced hepatocellular carcinoma (HCC) are extremely limited. Evidence from laboratory studies and human tissue suggest that angiogenesis is vital to the progression of HCC and that VEGF activity contributes significantly to this process. This study will evaluate the effect of VEGF inhibition (via bevacizumab) in patients with unresectable and advanced HCC. Bevacizumab (formerly known as rhuMab-VEGF, commercial name Avastin) is a recombinant humanized version of a murine anti-human VEGF monoclonal antibody. The overall design is a phase II study of bevacizumab, given every 14 days, at a dose of 10 mg/kg. Because this drug has not been extensively tested in patients with liver cirrhosis, additional safety precautions have been added. An initial cohort of patients will be treated at a reduced (5 mg/kg) dose, with dose escalation to 10 mg/kg if well tolerated. The study will determine, the effect on progression-free survival, disease stability and response, tumor vascularity and necrosis, circulating VEGF and related cytokines believed to be pathogenic in HCC. The effect of VEGF inhibition on liver function and hepatitis viral activity in cirrhosis will also be evaluated.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
General Clinical Research Centers Program (M01)
Project #
5M01RR000096-46
Application #
7605771
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Project Start
2007-04-01
Project End
2008-03-31
Budget Start
2007-04-01
Budget End
2008-03-31
Support Year
46
Fiscal Year
2007
Total Cost
$7,891
Indirect Cost
Name
New York University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Jun, Gyungah R; Chung, Jaeyoon; Mez, Jesse et al. (2017) Transethnic genome-wide scan identifies novel Alzheimer's disease loci. Alzheimers Dement 13:727-738
Homann, O R; Misura, K; Lamas, E et al. (2016) Whole-genome sequencing in multiplex families with psychoses reveals mutations in the SHANK2 and SMARCA1 genes segregating with illness. Mol Psychiatry 21:1690-1695
Ridge, Perry G; Hoyt, Kaitlyn B; Boehme, Kevin et al. (2016) Assessment of the genetic variance of late-onset Alzheimer's disease. Neurobiol Aging 41:200.e13-200.e20
Hohman, Timothy J; Bush, William S; Jiang, Lan et al. (2016) Discovery of gene-gene interactions across multiple independent data sets of late onset Alzheimer disease from the Alzheimer Disease Genetics Consortium. Neurobiol Aging 38:141-150
Jun, G; Ibrahim-Verbaas, C A; Vronskaya, M et al. (2016) A novel Alzheimer disease locus located near the gene encoding tau protein. Mol Psychiatry 21:108-17
Ebbert, Mark T W; Boehme, Kevin L; Wadsworth, Mark E et al. (2016) Interaction between variants in CLU and MS4A4E modulates Alzheimer's disease risk. Alzheimers Dement 12:121-129
Hohman, Timothy J; Cooke-Bailey, Jessica N; Reitz, Christiane et al. (2016) Global and local ancestry in African-Americans: Implications for Alzheimer's disease risk. Alzheimers Dement 12:233-43
Li, Yi; Tsui, Wai; Rusinek, Henry et al. (2015) Cortical laminar binding of PET amyloid and tau tracers in Alzheimer disease. J Nucl Med 56:270-3
Ghani, Mahdi; Reitz, Christiane; Cheng, Rong et al. (2015) Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurol 72:1313-23
Beecham, Gary W; Dickson, Dennis W; Scott, William K et al. (2015) PARK10 is a major locus for sporadic neuropathologically confirmed Parkinson disease. Neurology 84:972-80

Showing the most recent 10 out of 470 publications