This competing renewal continues to utilize human knee joints from donors across the adult age spectrum to establish phenotypic changes in articular cartilage and chondrocytes that are characteristic of normal joint aging and may predispose to the development of osteoarthritis (OA). The overall goal of this program is to begin with phenotype identification, proceed to elucidation of mechanisms and key cellular and molecular abnormalities in order to provide new directions for correcting aging-associated risk factors for OA and therapeutic interventions for established OA. Access to human tissues provides a unique opportunity to test the human and clinical relevance of novel basic and molecular mechanisms not only through correlative studies but also through an array of comprehensive in vitro studies with cells isolated from human tissues. The overall hypothesis proposes that cartilage aging is associated with loss and dysfunction that differentially affects cartilage cell subpopulations. Chondrocytes are compromised in function by aging-associated changes in signaling mechanisms and the inflammatory milieu of OA. The proposed program will continue the existing cores (A: Administration;B and C now combined into Core B: Tissue Acquisition, Morphology, and Cell Culture). The following 3 projects are proposed: Project 1, """"""""Chondrocyte subpopulations in aging and osteoarthritis"""""""" (PI: M. Lotz) will characterize chondrocyte subpopulations and the role of Sox9-dependent activation of chondrocytes in normal and aging cartilage. Project 2, """"""""Dysfunctional chondrocyte differentiation in aging cartilage"""""""" (PI: R. Terkeltaub) addresses the regulation of articular chondrocyte hypertrophy by altered Pi and PPi metabolism with focus on specific enzymes (NPP1, TNAP) and transporters (Ank, Pit-1). Project 4, """"""""Mechanobiology of human articular cartilage degeneration: aging and osteoarthritis"""""""" (PI: R. Sah) will analyze biomechanical mechanisms of early and advanced cartilage degeneration and determine consequences for chondrocyte function and survival. Collectively, the results from the proposed studies will add important new information on chondrocyte biology, cartilage aging, and osteoarthritis pathophysiology.

Public Health Relevance

Joint aging is the major risk factor for the osteoarthritis, the most prevalent joint disease. Therapies that modify the progressive cartilage destruction process are not available. This program represents a comprehensive analysis of cellular end extracellular matrix changes that are associated with aging and osteoarthritis. Defining mechanisms of healthy joint aging and pathogenetic mechanisms of osteoarthritis has the potential to lead to new osteoarthritis markers and therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG007996-18
Application #
7915653
Study Section
Special Emphasis Panel (ZAG1-ZIJ-5 (J4))
Program Officer
Williams, John
Project Start
1998-06-01
Project End
2012-04-30
Budget Start
2010-08-01
Budget End
2012-04-30
Support Year
18
Fiscal Year
2010
Total Cost
$2,119,925
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Chen, Liang-Yu; Lotz, Martin; Terkeltaub, Robert et al. (2018) Modulation of matrix metabolism by ATP-citrate lyase in articular chondrocytes. J Biol Chem 293:12259-12270
Matsuzaki, Tokio; Alvarez-Garcia, Oscar; Mokuda, Sho et al. (2018) FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci Transl Med 10:
Su, Alvin W; Chen, Yunchan; Dong, Yao et al. (2018) Biomechanics of osteochondral impact with cushioning and graft Insertion: Cartilage damage is correlated with delivered energy. J Biomech 73:127-136
Abhishek, Abhishek; Neogi, Tuhina; Choi, Hyon et al. (2018) Review: Unmet Needs and the Path Forward in Joint Disease Associated With Calcium Pyrophosphate Crystal Deposition. Arthritis Rheumatol 70:1182-1191
Fisch, K M; Gamini, R; Alvarez-Garcia, O et al. (2018) Identification of transcription factors responsible for dysregulated networks in human osteoarthritis cartilage by global gene expression analysis. Osteoarthritis Cartilage 26:1531-1538
Ramdani, Ghania; Schall, Nadine; Kalyanaraman, Hema et al. (2018) cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss. J Endocrinol 238:203-219
Serrano, Ramon L; Chen, Liang-Yu; Lotz, Martin K et al. (2018) Impaired Proteasomal Function in Human Osteoarthritic Chondrocytes Can Contribute to Decreased Levels of SOX9 and Aggrecan. Arthritis Rheumatol 70:1030-1041
Jin, Yunyun; Cong, Qian; Gvozdenovic-Jeremic, Jelena et al. (2018) Enpp1 inhibits ectopic joint calcification and maintains articular chondrocytes by repressing hedgehog signaling. Development 145:
Grogan, Shawn P; Duffy, Stuart F; Pauli, Chantal et al. (2018) Gene expression profiles of the meniscus avascular phenotype: A guide for meniscus tissue engineering. J Orthop Res 36:1947-1958
Baek, Jihye; Sovani, Sujata; Choi, Wonchul et al. (2018) Meniscal Tissue Engineering Using Aligned Collagen Fibrous Scaffolds: Comparison of Different Human Cell Sources. Tissue Eng Part A 24:81-93

Showing the most recent 10 out of 321 publications