Primary progressive aphasia (PPA) is one of the clinical presentations of the frontotemporal dementia- spectrum disorders. It occurs when neurodegeneration selectively targets the language networks of the brain. Discoveries from previous cycles of this PPG were fundamental in characterizing PPA and its main clinic- anatomical presentations: the nonfluent/agrammatic (nfvPPA), semantic (svPPA) and logopenic (lvPPA) variants. These three syndromes are associated with specific patterns of language and anatomical damage, and are each thought to have different probable underlying molecular causes. Despite these significant advances in PPA characterization, many questions regarding clinical heterogeneity, prognosis and biological basis remain unanswered. In this project, we will take advantage of the wealth of multidisciplinary expertise and data available through this PPG to investigate differential diagnosis, clinical and neuroimaging progression and in-vivo pathological prediction in PPA. We propose a five-year cross-sectional and longitudinal study of the cognitive, anatomical and biological features of more than 100 newly recruited individuals with PPA. We will use the most modern techniques, from computerized, tablet-based cognitive tests to molecular neuroimaging and gene expression, to develop principles and diagnostic concepts that can also be applied in less specialized settings. In particular, in Aim 1 we will use validated and tablet-based tests of visuo-spatial, executive and socio-emotional functions to study non-language features in the PPA variants. We hypothesize that specific patterns of cognitive dysfunction will be found in each PPA variant at presentation and at 1-year follow-up, depending on the anatomical network involved.
In Aim 2, we will use the human healthy connectome architecture to predict longitudinal neuroimaging changes in PPA. Based on the transynaptic-spread theory of neurodegeneration, we hypothesize that regions strongly connected to syndrome-specific epicenters will show atrophy and molecular PET changes at one-year follow-up. Finally, in Aim 3, we will combine clinical, neuroimaging, genetic and pathological data in the largest and most comprehensive PPA dataset ever examined, in a multivariate analyze that will determine whether molecular diagnosis can be predicted in-vivo. This project will provide crucial data for the diagnosis of neurodegenerative diseases in their early stages, when treatment can be most effective.

Public Health Relevance

The research focuses on Primary Progressive Aphasia (PPA), a fatal neurodegenerative disorder that manifests with speech and language symptoms. In this project, we will combine cognitive, neuroimaging and biological data from a large PPA cohort with the goal of improving differential diagnosis, prognosis and ultimately treatment of this devastating disorder.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG019724-19
Application #
9949609
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2020-06-01
Budget End
2021-05-31
Support Year
19
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Erkkinen, Michael G; Zúñiga, Raquel Gutiérrez; Pardo, Cristóbal Carnero et al. (2018) Artistic Renaissance in Frontotemporal Dementia. JAMA 319:1304-1306
Schneider, Raphael; McKeever, Paul; Kim, TaeHyung et al. (2018) Downregulation of exosomal miR-204-5p and miR-632 as a biomarker for FTD: a GENFI study. J Neurol Neurosurg Psychiatry 89:851-858
Ljubenkov, Peter A; Staffaroni, Adam M; Rojas, Julio C et al. (2018) Cerebrospinal fluid biomarkers predict frontotemporal dementia trajectory. Ann Clin Transl Neurol 5:1250-1263
La Joie, Renaud; Bejanin, Alexandre; Fagan, Anne M et al. (2018) Associations between [18F]AV1451 tau PET and CSF measures of tau pathology in a clinical sample. Neurology 90:e282-e290
Kim, Eun-Joo; Brown, Jesse A; Deng, Jersey et al. (2018) Mixed TDP-43 proteinopathy and tauopathy in frontotemporal lobar degeneration: nine case series. J Neurol 265:2960-2971
Henry, Maya L; Hubbard, H Isabel; Grasso, Stephanie M et al. (2018) Retraining speech production and fluency in non-fluent/agrammatic primary progressive aphasia. Brain 141:1799-1814
Nana, Alissa L; Sidhu, Manu; Gaus, Stephanie E et al. (2018) Neurons selectively targeted in frontotemporal dementia reveal early stage TDP-43 pathobiology. Acta Neuropathol :
Vatsavayai, Sarat C; Nana, Alissa L; Yokoyama, Jennifer S et al. (2018) C9orf72-FTD/ALS pathogenesis: evidence from human neuropathological studies. Acta Neuropathol :
Ossenkoppele, Rik; Rabinovici, Gil D; Smith, Ruben et al. (2018) Discriminative Accuracy of [18F]flortaucipir Positron Emission Tomography for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 320:1151-1162
Mandelli, Maria Luisa; Welch, Ariane E; Vilaplana, Eduard et al. (2018) Altered topology of the functional speech production network in non-fluent/agrammatic variant of PPA. Cortex 108:252-264

Showing the most recent 10 out of 607 publications