Primary infection by varicella zoster virus (VZV) usually causes varicella (chickenpox), after which virus becomes latent in human ganglionic neurons along the entire neuraxis. With aging, a declining cell- mediated immunity to VZV leads to virus reactivation, manifesting as herpes zoster (shingles) characterized by pain and rash restricted to 1-3 dermatomes. The incidence and severity of zoster is also high in transplant recipients and patients with cancer or AIDS. Zoster is frequently complicated by chronic pain (postherpetic neuralgia), as well as paralysis, blindness and stroke. Currently, -1,000,000 Americans develop zoster annually. Oka VZV vaccine reduces the incidence of zoster by 50%, but even if every American over age 60 was vaccinated, >500,000 cases of zoster annually are still expected. VZV induces apoptosis in non-neuronal cells, but establishes latent infection in neurons. VZV ORFs 66, 62 and 63, which are expressed in latently infected human ganglia, and ORF 4 share homology with HSV-1 genes that have an anti-apoptotic function. We hypothesize that inhibition of apoptosis during VZV infection of neurons underlies neuronal survival and latency. BecauseVZV gene 63 is the most prevalent and abundant transcript expressed during latency, and the encoded protein (IE63) inhibits apoptosis in human neurons in culture, this project will focus primarily on the anti- apoptotic function of IE63 and its interaction with cellular anti-apoptotic proteins.
Aim 1 will dissect the cascade of apoptotic events in VZV-infected non-neuronal cells.
Aim 2 will develop a model of VZV latency in differentiated human neuronal cells to enable comparative analysis of expression profiles of cellular anti-apoptotic genes in cultured neuronal and non-neuronal cells to determine where in the caspase cascade apoptosis is inhibited in neurons.
Aim 3 will analyze interactions of VZV proteins expressed in latently infected human ganglia with cellular anti- apoptotic proteins. Understanding anti-apoptotic mechanism(s) in neuronal cells latently infected with VZV will help to identify molecular targets for therapeutic strategies to prevent and control the serious neurological complications of VZV reactivation.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Program Projects (P01)
Project #
5P01AG032958-03
Application #
8230847
Study Section
Special Emphasis Panel (ZAG1)
Project Start
Project End
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
3
Fiscal Year
2011
Total Cost
$262,928
Indirect Cost
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Como, Christina N; Pearce, Catherine M; Cohrs, Randall J et al. (2018) Interleukin-6 and type 1 interferons inhibit varicella zoster virus replication in human neurons. Virology 522:13-18
Mahalingam, Ravi; Kaufer, Benedikt B; Ouwendijk, Werner J D et al. (2018) Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. J Virol 92:
Cohrs, Randall J; Badani, Hussain; Baird, Nicholas L et al. (2017) Induction of varicella zoster virus DNA replication in dissociated human trigeminal ganglia. J Neurovirol 23:152-157
Cohrs, Randall J; Lee, Katherine S; Beach, Addilynn et al. (2017) Targeted Genome Sequencing Reveals Varicella-Zoster Virus Open Reading Frame 12 Deletion. J Virol 91:
Nagel, Maria A; Jones, Dallas; Wyborny, Ann (2017) Varicella zoster virus vasculopathy: The expanding clinical spectrum and pathogenesis. J Neuroimmunol 308:112-117
Ouwendijk, Werner J D; van Veen, Suzanne; Mahalingam, Ravi et al. (2017) Simian varicella virus inhibits the interferon gamma signalling pathway. J Gen Virol :
Yawn, Barbara P; Wollan, Peter C; Nagel, Maria A et al. (2016) Risk of Stroke and Myocardial Infarction After Herpes Zoster in Older Adults in a US Community Population. Mayo Clin Proc 91:33-44
Gilden, Don; Nagel, Maria A (2016) Varicella zoster virus and giant cell arteritis. Curr Opin Infect Dis 29:275-9
Jones, Dallas; Blackmon, Anna; Neff, C Preston et al. (2016) Varicella-Zoster Virus Downregulates Programmed Death Ligand 1 and Major Histocompatibility Complex Class I in Human Brain Vascular Adventitial Fibroblasts, Perineurial Cells, and Lung Fibroblasts. J Virol 90:10527-10534
Gilden, Don; Nagel, Maria A (2016) Varicella zoster virus triggers the immunopathology of giant cell arteritis. Curr Opin Rheumatol 28:376-82

Showing the most recent 10 out of 124 publications